
PD Tracking for a Class of Underactuated
Robotic Systems With Kinetic Symmetry

Shishir Kolathaya, Member, IEEE

Abstract— In this letter, we study stability properties
of Proportional-Derivative (PD) controlled underactuated
robotic systems for trajectory tracking applications. Sta-
bility of PD control laws for fully actuated systems is an
established result, and we extend it for the class of un-
deractuated robotic systems. We will first show some well
known examples where PD tracking control laws do not
yield tracking; some of which can even lead to instability.
We will then show that for a subclass of robotic systems,
PD tracking control laws, indeed, yield desirable tracking
guarantees. We will show that for a specified time interval,
and for sufficiently large enough PD gains (input satura-
tions permitting), local boundedness of the tracking error
can be guaranteed. In addition, for a class of systems
with the kinetic symmetry property, stronger conditions like
convergence to desirable bounds can be guaranteed. This
class is not restrictive and includes robots like the acrobot,
the cart-pole, and the inertia-wheel pendulums. Towards
the end, we will provide necessary simulation results in
support of the theoretical guarantees presented.

Index Terms— PD control, underactuated robotics, ki-
netic symmetry.

I. INTRODUCTION

Underactuated robotic systems are systems with fewer in-
puts than degrees of freedom. Control or stabilization of this
class of systems is hard, due to the presence of zero dynamics
[1], [2]; unstable zero dynamics can lead to instability of
the entire system. Some of the methods used to control this
class of systems are partial feedback linearization [3], nested
saturations [4], and energy methods [5]. However, a lot of
these methods are nonlinear and heavily dependent on the
model, thereby, failing to gain acceptance in the industry. This
is reaffirmed by a recent industry survey [6], which showed
that the most popular control law used, even today, is the PD
(or even PID) control.

Given the high acceptance rating of PD tracking control
laws, it is worthwhile to analyze their stability guarantees. For
the class of fully actuated robotic systems, there are a slew of
convergence guarantees: asymptotic convergence is established
in [7], exponential stability for a constant desired configuration
is established in [8], [9], and ultimate boundedness for a time
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varying desired configuration is established in [10], [11]. On
the contrary, only preliminary results exist for the class of
underactuated robotic systems. For example, in the classic
cart-pole system, it can be shown that local stability results
can be achieved as long as the pole is above the horizontal
[12]. This is established via linearization about its vertical
position. However, stability guarantees for systems with time
varying desired trajectories cannot be provided via lineariza-
tion. Similarly, there are preliminary results of stability for PD
controlled bipedal walking robots [13]. Local convergence and
boundedness was established in [13] by imposing assumptions
on the zero dynamics i.e., the zero dynamics is assumed
to have a stable periodic orbit. However, for the class of
continuous robotic systems, these assumptions are restrictive.
In a lot of the applications, the goal is to provide reasonable
tracking guarantees regardless of the zero dynamics being
stable or not. Therefore, there is a need for a detailed study
on the set of conditions, with which convergence guarantees
for PD control laws can be provided.

The goal in this letter is to identify the types of underac-
tuated robotic systems, and the associated set of assumptions,
for which tracking guarantees can be provided for PD control
laws. The results presented are mainly motivated by [13]. In
particular, local convergence to a bound in a finite interval
was established in [13, Lemma 1], which was then utilized to
establish stability of the full system. This was achieved for the
class of robots with bounded inertia matrices (known as class
BD [14]). The letter generalizes this result to include a larger
class of systems i.e., we include tracking in the unactuated
joint coordinates as well. With this result, we then establish
the main result of the letter for a sub-class of robotic systems
i.e., systems where the kinetic energy is invariant of some of
the configuration variables (known as kinetic symmetry [2]).
In particular, we show that for any specified time interval,
exponential convergence of the error to a desirable bound
can be established for that interval. This will be validated by
simulating two underactuated robot models: the acrobot, and
the cart-pole (shown by Fig. 1).

The paper is structured as follows: Section II will provide
a description of the robot model. We will describe the various
types of underactuations and the associated model properties.
Section III will describe the PD control law. We will provide
concrete examples of some underactuated robot models, where
PD control fails. Equipped with this analysis, we will then
identify conditions that, when satisfied, eliminate the failure
cases. These conditions are not restrictive, and, in fact, include
a large body of underactuated systems in practice. For this
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Fig. 1. Figure showing some examples of underactuated systems: the
acrobot (left), the pendulum-slider (top right), and the cart-pole system
(bottom right).

class of systems, we present the main results in Section IV,
and the simulation results in Section V.

Notation. Let R denote the set of real numbers, and Rn denote
the Euclidean space of dimension n. An open Euclidean ball
of radius r > 0 centered at x ∈ Rn is denoted by Br(x). For
any x ∈ Rn, the Euclidean norm is denoted by |x|. Given
a symmetric matrix A ∈ Rm×m, we denote its minimum
and maximum eigenvalues as λmin(A), λmax(A) respectively.
Norm of A is denoted by ‖A‖.

II. ROBOT MODEL

We consider an n-DOF rigid robotic system, with the
configuration manifold Q. The state is denoted by x :=
(q, q̇) ∈ TQ, which is of dimension 2n, and the torque input
is denoted by u ∈ Rm, which is of dimension m < n. Given
the states and inputs, the Euler-Lagrangian dynamics is given
by the following:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (1)

where D(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n
is the Coriolis-centrifugal matrix, G(q) ∈ Rn is the gravity
vector, and B ∈ Rn×m is the mapping of the torques to
the joints. (1) is obtained from the Lagrangian L(q, q̇) :=
1
2 q̇
TD(q)q̇ − V(q), where V : Q→ R is the potential energy.

Specifically the left hand side (LHS) of (1) is obtained as

d

dt

∂L

∂q̇i
− ∂L

∂qi
, i = 1, 2, . . . , n. (2)

In this letter, we will specifically focus on systems with non-
interacting inputs i.e., each joint, if actuated, is independently
and directly controlled by an actuator. Hence, unlike the
matrices D,C,G, it is assumed that B is well known1. Hence
B will be a tall matrix with the rows corresponding to the
unactuated coordinate being identically zero. The remaining
rows will consist of only one element with value 1. Note that
D,C have some important properties, namely, D is symmetric
positive definite, and Ḋ − 2C is skew-symmetric [14]. These

1Later on in Assumption 2, additional restrictions will be imposed on the
types of allowable B, which will be useful for simplifying the results.

properties will be useful in the next section. (1) can be
represented in statespace form as

ẋ = f(x) + g(x)u, (3)

by appropriate determination of f, g. Since the robot is under-
actuated (m < n), we can rearrange the rows and identify two
types of configuration variables: a) the shape variables qm of
dimension m, which are to track a specific desired trajectory,
and b) the external variables qz of dimension l = n − m,
which are the remaining elements of q. Accordingly, we can
separate the dynamics of the robot (1) into two parts

D11(q)q̈z +D12(q)q̈m + C1(q, q̇)q̇ +G1(q) = B1u

D21(q)q̈z +D22(q)q̈m + C2(q, q̇)q̇ +G2(q) = B2u. (4)

The terms corresponding to D,C,G and B are apparent from
the setup and their explicit expressions are avoided in the
interest of space. If qz is unactuated, then B1 = 0. Therefore
q̈z can be eliminated from (4) to obtain

(D22 −D21D
−1
11 D12)q̈m+(C2 −D21D

−1
11 C1)q̇ (5)

+G2 −D21D
−1
11 G1 = B2u.

Alternatively, there are classes of systems where qm is
unactuated, for which B2 = 0. Accordingly, we obtain
−D21D

−1
11 B1u on the right hand side (RHS) of (5). In this

case, D21 must be non-zero for u to have any effect on q̈m.
In a similar fashion, other types of combinations i.e.,

tracking of a mix of actuated and unactuated coordinates are
also possible, and their formulations will be similar to (5).
Hence, as long as the number of joints to be tracked is equal to
the number of inputs, we can represent the following reduced
dynamics:

Du(q)q̈m + Cu(q, q̇)q̇ +Gu(q) = Bu(q)u, (6)

where qm is the configuration to be tracked, Du, Cu, Gu are
given by (5), and Bu : Q → Rm×m is the mapping matrix
appropriately obtained. Similar to D, Du is also symmetric
positive definite (see [13, Proposition 1]). Specific restrictions
on Bu will be imposed in the next section. Depending on
the mapping matrix B, the shape variable can be actuated,
unactuated or partially actuated, and the goal is to study
tracking performances when a PD control law is applied.

Systems with kinetic symmetry. In this letter, we are
particularly interested in a sub-class of robotic systems, where
the kinetic energy is invariant of some of the configuration
coordinates. For example, if the system has kinetic symmetry
w.r.t. the ith coordinate qi, then ∂q̇TD(q)q̇

∂qi
= 0. In this

manuscript, we will be interested in systems having kinetic
symmetry w.r.t. the external variables qz . A large class of
systems such as walking robots, cart-pole systems, and serial
chain manipulators fall in this category. These systems have
salient properties that allow us to establish stronger results for
PD based control laws. For example, we can infer from (2)
that

d

dt

∂L

∂q̇z
= −∂V(q)

∂qz
, (7)

which is purely a function of q. This will be used in the results
that follow.
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Fig. 2. Figures showing the PD tracking results as a function of time
for the pendulum-slider system. All positions are in radians. See Fig.
1 for the pictorial representation of this system. Gravity is ignored for
convenience.

Fig. 3. Figures showing the tracking results for the cart-pole system.
Position errors are measured in radians. See Fig. 1 for the pictorial
representation of this system. Note that η = (θ, θ̇).

III. PD TRACKING WITH UNDERACTUATION

Having obtained the underactuated robot model, we are now
ready to study PD tracking for these types of systems. For qm

to be tracked, we have the desired trajectory qd : R≥0 →
P(Q), where P is the canonical projection for qm. We would
like to obtain suitable PD gains that yield tracking of this
desired trajectory. Therefore, we define the following relative
degree two output:

e(t, qm) = qm − qd(t), (8)

where e is the error between the actual and the desired values.
For convenience, we will impose the following assumption on
the desired trajectory:

Assumption 1: For the class of robot manipulators BD, the
desired configuration qd : R≥0 → Rm is chosen such that it
is two times differentiable, and its first and second derivatives
are uniformly bounded by some cq > 0.

Note that this is not a restrictive assumption, as the actuators
have practical limits (both speed and torque). With this desired
trajectory, we use the following PD control law:

uPD(t, qm, q̇m) = −Kp(q
m − qd(t))−Kd(q̇

m − q̇d(t)),
(9)

where Kp,Kd are the gain matrices of dimension m. For
simplicity, we will assume that equal gains are applied for
every joint i.e., Kp = kp1, Kd = kd1 for some kp, kd > 1
and an identity matrix 1 of appropriate size. Having defined
this PD control law (9), we have the resulting closed loop
dynamics of (3) as

ẋ = f cl(t, x) := f(x) + g(x)uPD(t, qm, q̇m). (10)

Two types of questions can be asked about the track-
ing/stability performance of this closed loop system (10): a)

can we provide tracking/stability guarantees for all classes of
robotic systems? (b) can we guarantee convergence from any
initial state on Q? To answer these questions, we will present
two concrete examples to show that tracking can fail under
more than one situations.

Example 1: Consider a 2-DOF pendulum-slider system
i.e., a pendulum is hinged on one side with a prismatic joint
sliding on the top. The pendulum is actuated, while the slider
is not. See Fig. 1 for more details. For simplicity, we will
not include gravity terms for this example. We will choose
the desired trajectory for the pendulum to be a trigonometric
function: qd(t) = sin(t). The results for applying the PD
control law with kp = ε2, kd = 2ε are shown in Fig. 2.
It can be observed that the tracking error is increasing over
time despite increasing the gains. This is because the slider
position r is increasing in an unbounded fashion for all t,
thereby affecting the overall rotational inertia of the pendulum
about its pivot.

It is worth noting that the class of manipulators used
in practice rarely have the type of configuration shown in
Example 1. To illustrate, walking robots like AMBER [15],
and manipulators like SCARA [16] do not have this problem.
Therefore, the first step in this letter is to choose a sub-class
of manipulators called the class BD [14] manipulators. This
class can have any one of the following configurations:
(a) All joints are prismatic.
(b) All joints are revolute.
(c) A series of prismatic joints followed by a series of

revolute joints.
(d) Configurations where the axis of translation of each

prismatic joint is parallel to all preceding revolute joints.
Class BD manipulators have desirable properties, which are
useful for establishing stability guarantees:

Property 1: For the class of manipulators BD there exist
cl, cu > 0 such that ∀ (q, q̇) ∈ TQ,
(a) cl ≤ ‖D(q)‖ ≤ cu
(b) cl ≤ ‖D−1(q)‖ ≤ cu
(c) ‖Ḋ(q, q̇)‖ ≤ cu|q̇|
(d) ‖C(q, q̇)‖ ≤ cu|q̇|
(e) ‖G(q)‖ ≤ cu

Property 1 is well established in literature, and can be found
in [14] (for D), [17] (for C), and in [18] (for G). Accordingly,
Du, Cu, Gu have the following properties:

Property 2: For the class of robot manipulators BD there
exist positive constants cl, cu such that ∀ (q, q̇) ∈ TQ,
(a) cl ≤ ‖Du(q)‖ ≤ cu
(b) cl ≤ ‖D−1

u (q)‖ ≤ cu
(c) ‖Ḋu(q, q̇)‖ ≤ cu|q̇|
(d) ‖Cu(q, q̇)‖ ≤ cu|q̇|
(e) ‖Gu(q)‖ ≤ cu

Note that we have used the same constants cl, cu for ease of
notations. Proof of Property 2 is in [13, Appendix A]. Despite
restricting our study to the class of BD manipulators, the
following example shows that PD tracking can still fail:



Example 2: Consider a cart-pole system shown in Fig. 1.
The cart is actuated, but the pendulum is unactuated and
free to rotate in any direction. We will choose the desired
trajectory for the pendulum to be, qd(t) = 2 sin(t), which has
a higher amplitude. The results are shown in Fig. 3 with the
proportional gain kp = ε2, and the derivative gain kd = 2ε.
It was observed that irrespective of the gains applied, the
tracking failed when the pendulum angle crossed π/2.

In Example 2, the choice of the actuated/unactuated coordinate
was affecting the tracking performance. At θ = π/2, Bu = 0,
resulting in a non-inertially coupled configuration [3], thereby
resulting in poor tracking. However, local results can still be
achieved by choosing a subset of the configuration space Qu ⊂
Q, with qd(t) ∈ P(Qu). Furthermore, in order to simplify the
results that follow, we will impose a stronger restriction on
the allowable Bu:

Assumption 2: For the class of robot manipulators BD,
qd, Qu are chosen such that for a small enough ι > 0, and ∀
t ≥ 0, q ∈ Qu,

Λ:=

[
Bu +BTu Bu + (1 + |e|)(BTu − ι1)

BTu + (1 + |e|)(Bu − ι1) (1 + |e|)(Bu +BTu )

]
is symmetric positive definite.

Note that this is not a restrictive assumption. For example,
for systems where the actuated configurations are required to
track a trajectory, the mapping Bu becomes an identity (e.g.,
acrobot), thereby naturally satisfying Assumption 2. Similar
observations can be made for other types of configurations.

IV. MAIN RESULTS

We are now ready to study the stability properties of
underactuated robotic systems when a PD control law is
applied. We will first study the zero dynamics that is associated
with underactuations, and then present the main results.

Normal forms. It is well known that for underactuated
mechanical systems, there exists a global change of coor-
dinates that yields two sets of equations that correspond to
the controlled and uncontrolled dynamics respectively [1].
Hence, for the given set of shape variables qm, we have
the corresponding change of coordinates: Φt : TQu → R2n

that yields Φt(q, q̇) := (e(t, qm), ė(t, qm, q̇m), z(q, q̇)), where
z : TQu → R2(n−m) are the new uncontrolled states.
Accordingly, the statespace dynamics can be expressed via
e, ė, z. If the tracking error is zero, then the resulting dynamics
of z is called the zero dynamics [1]. The zero dynamics lies
on

Zt = {(q, q̇) ∈ TQu : e(t, qm) = 0, ė(t, qm, q̇m) = 0}. (11)

We will assume that the solution of the zero dynamics is
forward complete [19].

It is worth noting that even if the diffeomorphism is guar-
anteed to exist, explicit analytical expressions are difficult to
find. However, for systems with kinetic symmetry, this can
be analytically obtained. This sub-class of systems will be
discussed later on. We will first present a more general result,
which is a straightforward extension of the results presented

in [13]. For the initial state (q0, q̇0) ∈ Qu, we will denote the
evolution of the error as a function of time by (e(t), ė(t)),
with e(0) = qm0 − qd(0), ė(0) = q̇m0 − q̇d(0). Similarly, let
z0 ∈ Z0 (by a slight abuse of notation) be the initial state of
z, and let z∗(t) be the solution for the zero dynamics for all
t ≥ 0. We then have the following theorem:

Theorem 1: Given the class of manipulators BD, let the
configuration set Qu, and the desired configuration qd be
picked such that Assumptions 1 and 2 are satisfied. Then we
have the following:
(a) For every (q0, q̇0) ∈ TQu, there exist sufficiently large

enough gains kp, kd > 1, and a correspondingly small
enough Tδ > 0 such that the outputs (e(t), ė(t)) are
exponentially convergent to a bound for all t ∈ [0, Tδ].

(b) For every T > 0, and for every z(0) ∈ Z0, there exists a
small enough r > 0, and sufficiently large enough gains
kp, kd > 1 such that for all (e(0), ė(0)) ∈ Br(0, 0),
the outputs (e(t), ė(t)) are exponentially convergent to
a bound for all t ∈ [0, T ].

Remark 1: When we say that the error is exponentially
convergent to a bound in the interval [0, Tδ] we mean that
there exist M,λ, d > 0 such that

|(e(t), ė(t))| ≤Me−λt|(e(0), ė(0))|+ d,∀t ∈ [0, Tδ]. (12)

Both (a) and (b) of Theorem 1 are very similar, except that the
roles of some of the variables are reversed. In particular, (a)
establishes that for every initial state there is a small enough
interval [0, Tδ], in which the boundedness is ensured, and
similarly (b) establishes that for every closed interval there
is a small enough neighborhood for (e(0), ė(0)), in which the
boundedness is ensured. Note that this theorem is an extension
of [13, Lemma 1 and Lemma 2]. Therefore, proofs of both the
parts follow the steps in [13, Proofs of Lemma 1 and Lemma
2] respectively. In particular, the derivative of the Lyapunov
candidate chosen will now consist of the time dependent q̇d, q̈d,
which are replaced by their bounds (by Assumption 1). In this
letter, we will prove a stronger result for a sub-class of robotic
systems that have kinetic symmetry.

Systems with kinetic symmetry. With the presence of
kinetic symmetry, there are explicit forms for the change of
coordinates that transform the class of underactuated systems
into a normal form [1]. Specific formulations for the different
types of configurations are shown in [2]. Hence, for the given
set of shape variables qm, we can choose the zero coordinates
to be z1 := qz, z2 := Dz q̇, where Dz consists of the rows of
D that correspond to the unactuated qi’s. For example, if qm

is fully actuated, then Dz = [D11 D12]. The dynamics of z
can thus be derived accordingly. With this property, we have
the following result.

Theorem 2: Given the class of manipulators BD, let the
configuration set Qu, and the desired configuration qd be
picked such that Assumptions 1 and 2 are satisfied. In addition,
let the system satisfy the kinetic symmetry property w.r.t. the
external variables qz . If the system belongs to one of the
following categories:
(a) The shape variables qm are actuated,



(b) The shape variables qm are unactuated/partially actu-
ated, D11(qm) has constant terms, and D21(qm) satisfies
the differential conditions (Remark 2),

then for every T > 0, and for every (q0, q̇0) ∈ TQu,
there exist sufficiently large enough gains kp, kd > 1 such
that the outputs (e(t), ė(t)) are exponentially convergent to a
(desirable) bound for all t ∈ [0, T ].

Remark 2: A matrix function M : Rm → Rm×l is
said to satisfy the differential conditions if ith row of the
matrix M (denoted by Mi) satisfies ∂M(qm)T

∂qmi
= ∂Mi(q

m)T

∂qm ,

for i = 1, 2, . . . ,m. Here, qmi denotes the ith element of
qm. It is worth noting that this is a generalized version of
the differential symmetric conditions shown in [2, Definition
4.2.2] for square matrices. As an example, cart-pole systems
satisfy these conditions. With this definition, we now prove
Theorem 2. It is divided into two parts.

Proof: [Proof of Theorem 2(a)] In the interest of space,
we will follow the steps in [13, Proofs of Lemma 1 and 2],
and then highlight the changes that establish Theorem 2(a).
We will first establish boundedness for a small enough interval
[0, Tδ], and then stretch Tδ to T . To establish convergence to
a bound, we consider the following Lyapunov candidate:

Ve(e, ė, q) = V0(e, ė, q) + Vc(e, ė, q) (13)

V0(e, ė, q) =
1

2

[
e
ė

]T [
ιKp 0
0 Du(q)

] [
e
ė

]
(14)

Vc(e, ė, q) = α(e)eTDu(q)ė (15)

α(e) =
k0

1 + |e|
=

k0

1 +
√
eT e

. (16)

Here Ve is similar to the Lyapunov function chosen in [13,
(54)], except for the inclusion of the constant term ι. k0 > 0
is chosen such that Ve is positive definite. Accordingly, we
have the following bounds on Ve:

λl

∣∣∣∣[√kpeė

]∣∣∣∣2 ≤ Ve ≤ λu ∣∣∣∣[√kpeė

]∣∣∣∣2 , (17)

for some positive constants λl, λu that do not depend on kp.
Following the steps similar to [13, (62)-(65)], we have the

derivative of Ve as

V̇e ≤−
α

2

[
e
ė

]T[
kp(Bu +BTu )

kp(B
T
u −ι1)+αkdBu

α
kp(Bu−ι1)+αkdBT

u

α
kd(Bu+B

T
u )

α

][
e
ė

]
+ cu(α|e|+ |ė|)(|z2|2 + 1)

+ 2cu(α+ α|e|+ |ė|+ 1)|ė|2, (18)

where the constant cu > 0 is simply redefined to collect all
the constant terms. It can be verified that by kinetic symmetry,
Ḋu is only dependent on qm, q̇m. Therefore, only the second
summand depends on z2 (compared to [13, (65)]). Similarly,
following the steps in [13, (65)-(73)], we choose the control
gains kp, kd in such a way that Ve is decreasing. Therefore
we choose kp = ε2 and kd = kε for some k, ε > 1. For |z2|,
we will pick a tube of radius r (say) around z∗(t), and let Tδ
be the time when z crosses this radius. In this compact tube

around z∗(t), where t ∈ [0, Tδ], let the maximum value of
z(t) be b. We have the following inequality:

V̇e ≤ −
αλmin(Λ)

4
|(εe, kė)|2 + k1(α|e|+ |ė|), (19)

where k1 = cu(|z2|2 + 1), and Λ is given by Assumption
(2) (which is only dependent on qm, and has a minimum
eigenvalue in a compact tube in Qu specified by the interval
[0, T ] and the initial states). The above inequality is satisfied
as long as z remains in the tube. Accordingly, we have that

Ve(t) ≤ e−2ελtVe(0) +
kb
ε2
, t ∈ [0, Tδ], (20)

where λ, kb are obtained by collecting all the additional terms
that are independent of ε (see [13, (69)-(72)]). kb is shown
with its subscript to indicate its dependence on b. We can
express the above inequality in terms of the outputs as∣∣∣∣[e(t)ė(t)

]∣∣∣∣ ≤ εe−ελt
√
λu
λl

∣∣∣∣[e(0)
ė(0)

]∣∣∣∣+

√
kb
ε2λl

, (21)

where (17) is substituted.
Having established convergence in [0, Tδ], we will now

stretch Tδ to T . Since qm is actuated, we know from (7) that
the dynamics of z2 will only consist of terms dependent on q,
and not on the velocity q̇. Therefore, we have the following:

|z(t)− z∗(t)| ≤
∫ t

0

|ż(s)− ż∗(s)| ds

≤cz
∫ t

0

|η(s)|ds+ cz

∫ t

0

|z(s)− z∗(s)|ds,

for some cz > 0. Here η(t) := (e(t), ė(t)) for convenience.
In comparison, [13, (78)] has terms quadratic in |η(s)| and
|z(s) − z∗(s)|. Also note that z(0) = z∗(0). By using
Gronwall-Bellman inequality [20, Lemma A.1], we obtain

|z(t)− z∗(t)| ≤

(
cz
λ

√
λu
λl
|η(0)|+ cz

√
kb
ε2λl

Tδ

)
eczt.

This shows that the maximum possible value above decreases
with increasing ε. Therefore, given η(0) and T , we can set
a suitable upper bound b for the specified interval, and then
increase ε such that z(t) still remains within the tube in
[0, T ]. This ensures that convergence of η(t) = (e(t), ė(t))
is achieved to desirable values. This completes the proof.

Proof: [Proof of Theorem 2(b)] Proof of this part is
straightforward after proving part (a). We first note that the
dynamics obtained from (2) will contain velocity dependent
terms like Ḋ(qm, q̇m)q̇ and ∂q̇TD(qm)q̇/∂q. Remaining terms
will not contain q̇z, q̇m. Since Ḋ is only dependent on
qm, q̇m and D11 is a constant, we have Ḋ11 = 0, and
∂(q̇zTD11q̇

z)/∂q = 0. In addition, by differential conditions,
row i of D21 satisfies

Ḋ21i(q
m, q̇m)q̇z =

∂

∂qmi
q̇mTD21(qm)q̇z. (22)

It can be verified that the resulting dynamics obtained from
(2) will not contain terms dependent on q̇z . This implies that
the resulting derivative of the Lyapunov function (18) will not
be containing terms dependent on z2. Hence, the convergence
result follows directly.
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Fig. 4. Figure showing the tracking results for the acrobot. The error is
expressed in radians.
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Fig. 5. Figure showing the tracking results for the cart-pole system.
Error is expressed in radians.

V. SIMULATION RESULTS

In this section we will briefly discuss the simulation results
for two robot models:

1) Acrobot: Both the links are having mass m = 0.05 kg.
Link length is l = 1 m, and lc = 0.1 m (see Fig. 1). The states
are (q1, q2, q̇1, q̇2). Only q1 is actuated. The goal is to have q1
track a sinusoidal trajectory. Therefore, this system satisfies
the conditions of Theorem 2(a). Results are shown in Fig. 4.
The gains used are kp = ε2 and kd = 2ε, with ε = 1, 2, 5.
Increasing ε results in smaller bounds. Note that q2 will be
floating since the PD control does not provide convergence
guarantees for the uncontrolled states of the system.

2) Cart-pole: Mass of the cart is m1 = 5 kg, and that of
the pole is m2 = 1 kg. Length is ` = 1 m (see Fig. 1). r
is the cart position, and θ is the pole angle. Since the kinetic
energy is symmetric w.r.t. the cart-position, with D11 being
a constant, and D21 satisfying the differential conditions, we
can apply Theorem 2(b). Note that these conditions were also
used in [2, Proposition 4.2.1] for cart-pole systems. The goal
is to drive θ → 0, and the results are shown in Fig. 5. The
gains used are kp = ε2 and kd = 2ε, with ε = 10, 20, 40.
It can be verified that the zero coordinates are increasing in
magnitude w.r.t. time, whereas θ is exponentially decreasing.

VI. CONCLUSIONS

PD based control laws are known to exhibit low sensitivity
to modeling errors, and are very easy to implement for all
kinds of trajectory tracking applications. Hence, in this letter,
we showed that some of the stability guarantees existing for
fully actuated systems can still be extended for underactuated
robotic systems. For the class of BD manipulators with non-
interacting inputs, and for desired trajectories with bounded
derivatives, we can tune PD gains to yield local convergence
and boundedness guarantees. In addition, for a sub-class of
robotic systems containing kinetic symmetry, stronger conver-
gence guarantees can be provided. Future work will involve

including noise, torque saturations, and establishing stability
guarantees for a broader class of underactuated robotic sys-
tems.
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