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Abstract— In this paper, inspired by Proportional-Derivative
(PD) control laws, we present a class of Control Lyapunov
Function (CLF) based Quadratic Programs (QPs) for robotic
systems. Proportional-Derivative (PD) control laws are indepen-
dent of the robot model, however, they fail to incorporate phys-
ical constraints, such as torque saturation. On the other hand,
most optimization based control design approaches ensure
satisfaction of the physical constraints, but they are sensitive to
errors in the robot model. The PD based Quadratic Programs
(PD-QPs), presented in this paper, are a first step towards
bridging this gap between the PD and the optimization based
controllers to bring the best of both together. We derive two
versions of PD-QPs: model-based and model-free. Furthermore,
for tracking time-varying trajectories, we establish asymptotic
stability for the model-based PD-QP, and ultimate boundedness
for the model-free PD-QP. The performance of the PD-QPs is
evaluated on two robot models: a fully actuated cart-pole and
an underactuated 5-DOF biped.

I. INTRODUCTION

Despite great advances in the theory of nonlinear controls,
Proportional-Derivative (PD) control laws continue to be the
most popular choice in industrial applications, according
to a survey conducted by the International Federation of
Automatic Control (IFAC) [24, Table 1A]. This overwhelm-
ing preference for PD controllers stems from three main
reasons: First, PD control laws are model-independent un-
like various nonlinear controllers—such as input-output (IO)
linearization and backstepping—thereby, avoiding brittleness
from modeling errors. Second, PD controllers are intuitive to
understand and easy to implement. Finally, PD controllers
are accompanied by formal stability guarantees, especially
for systems with Lagrangian dynamics [5], [9], [14], [27],
[32]; see Table I for a non-exhaustive list of such stability
results.

Table 1A in [24] also highlighted an increase in the
popularity of model predictive controllers (MPCs) which
received the second highest impact ratings, next only to PD
controllers. The success of MPCs can be attributed to the
advances in computational performance which have enabled
optimization solvers to operate in real-time. Some instances
of optimization based controllers include QP based control
of zero-moment point walkers [18], constrained dynamical
systems [23], and QP based state estimation of bipeds [29].
Reference [7] presented the class of controllers designed
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Control Law Literature

PD regulation GAS [14], [25], LES [5], [15], GES [17]
PD tracking LES [10], [16], [27], [28]

TABLE I: A collection of stability results for PD based control
of robotic systems. The abbreviations used in the table are given
as follows: GAS is globally asymptotically stable; LES is locally
exponentially stable; and GES is globally exponentially stable.

using rapidly exponentially stabilizing CLF-QPs [3], which
were successful in realizing stable walking on the limit-
cycle gait bipedal robot MABEL. However, these CLF-QPs
were derived from input-output linearization based control
laws [11, Chapter 13.2], which involve inverting the model,
leading to a possible amplification of small modeling errors.

With a view toward addressing the limitations of input-
output linearization based QPs (IO-QPs), we propose the
use of a new class of QPs motivated by PD control laws
for robotic systems [6], [14], [21], [28]. We derive two
types of PD based QPs (PD-QPs): 1) Model based PD-QP
that uses the robot model, and model-free PD-QP that does
not require the robot model. For the model based PD-QP,
we establish guarantees of asymptotic stability, and for the
model-free PD-QP, we establish ultimate boundedness for
fully actuated systems. This ultimate bound can be shrunk
arbitrarily by tuning the parameters of the QP appropriately,
thereby, rendering this class of controllers practically feasi-
ble; see Theorem 1 and Remark 1 ahead. We also provide
QP formulations for underactuated systems, the stability of
which requires a detailed analysis of the zero dynamics; due
to space constraints this stability analysis will be presented in
a future publication. These QP formulations are validated and
compared with IO-QPs for two robot models: fully actuated
cart-pole system, and an underactuated 5-DOF biped. Our
results show that the PD-QPs are robust even to a 200%
increase in the inertial parameters (i.e., three times the actual
values), while IO-QP fails with large excursions from the
desired trajectories.

The paper is structured as follows. Section II provides a
brief technical discussion on CLFs and the associated CLF-
QPs. Section III describes the robot model. Sections IV and
V contain the main results of the paper, i.e., model-based QP
and model-free QP for robotic systems, respectively. Finally,
Section VI discusses the simulation results.

Notation. Let R denote the set of real numbers and Rn de-
note the Euclidean space of dimension n. An open Euclidean
ball of radius r > 0 centered at x ∈ Rn is denoted by Br(x).
For any x ∈ Rn, the Euclidean norm is denoted by |x|, and
for any matrix A ∈ Rn×m, the matrix norm is represented



by ‖A‖. The superscript + is used to denote the generalized
inverse of a matrix, i.e., the generalized inverse of A is given
by A+. A continuous function α : R≥0 → R≥0 is said to
belong to class K if it is strictly increasing and α(0) = 0.
We say that a function h : Rn → Rm is locally Lipschitz at
x ∈ Rn if there exist constants L > 0 and r > 0 such that
‖h(y)−h(x)‖ ≤ L‖y− x‖ for all y ∈ Br(x).

II. TECHNICAL PREREQUISITES FOR CLF-QPS

In this section, we will define a control Lyapunov function
(CLF) and the associated quadratic program (QP) for a
nonlinear system with affine control.

Given the state1 x ∈Rn and inputs u ∈U ⊆Rm, we have
the following dynamical system

ẋ = fe(t,x)+ge(t,x)u, (1)

where fe : R≥0 × Rn → Rn, ge : R≥0 × Rn → Rn×m are
locally Lipschitz. Intuitively, a CLF ensures the existence
of a feedback control law for which the equilibrium of the
dynamics are asymptotically stable. In the next definition,
we make this notion mathematically precise.

Definition 1: A continuously differentiable function V :
R≥0 ×Rn → R≥0 is said to be a local control Lyapunov
function if there exist class K functions α1,α2,α3,α4, a set
of inputs U ⊆ Rm, and r > 0 such that for all x ∈ Br(0),

α1(|x|)≤V (t,x)≤ α2(|x|) (2)∣∣∣∣∂V (t,x)
∂x

∣∣∣∣≤ α3(|x|)

inf
u∈U

[
∂V (t,x)

∂ t
+L feV (t,x)+LgeV (t,x)u

]
≤−α4(|x|), (3)

where L feV,LgeV are the Lie derivatives2 of V with respect
to fe,ge, respectively.

Definition 1 is reminiscent of the criterion for Lyapunov’s
theorem [11, Theorem 4.1], albeit with the control input u.
Indeed, choosing a u that satisfies (3) at each time instant
results in a closed-loop system for which the CLF, V , acts
as a Lyapunov function, ensuring asymptotic stability of the
equilibrium point. Conversely, if the closed-loop dynamics
of a controller u = k(t,x) exhibits a Lyapunov function for
an equilibrium point, then that Lyapunov function is also a
CLF as it implicitly ensures the existence of a u that satisfies
(3). This observation is formalized in the following lemma:

Lemma 1: Consider the dynamical system given by (1).
Let k : R≥0×Rn → U ⊆ Rm be a locally Lipschitz control
law for which x = 0 is an asymptotically stable equilibrium
point. Further, let V : R≥0 × Rn → R≥0 be a Lyapunov
function for the closed-loop system obtained by using u =
k(t,x) in (1). Then, V is also a CLF for this system.

Proof of Lemma 1 is obtained directly from Definition 1.
With Lemma 1, the search for a CLF reduces to finding a

1The state space dimension will be changed to 2n for the robot model
later on.

2See [21, Chapter 7, 2.1] for a definition of the Lie derivatives.

Lyapunov function for some stabilizing control law, which—
despite being a challenging task in itself—is more tractable
than finding a CLF directly.

The ability to forge control laws using a QP with a notion
of (inverse) optimality is precisely the reason behind the
popularity of CLF based QPs. Therefore, having obtained
a CLF from a stabilizing control law, we have a QP based
control with (3) as the linear constraint:

u∗(t,x) = argmin
u

uT H(t,x)u+ c(t,x)T u (QP)

s.t. ψ0(t,x)+ψ1(t,x)u≤ 0,

where

ψ0(t,x) =
∂V (t,x)

∂ t
+L feV (t,x)+α4(|x|) (4)

ψ1(t,x) = LgeV (t,x), (5)

where H(t,x) ∈ Rm×m is a positive semi-definite matrix for
all t,x, and c(t,x) ∈ Rm is a vector contributing to the
linear cost. The cost function of (QP) pertains to the energy
cost of the control action, while the inequality constraint
encapsulates its effect on the stability of the equilibrium.
We denote the set of control inputs that satisfy the inequality
constraint of (QP) as

K(t,x) = {u ∈U : ψ0(t,x)+ψ1(t,x)u≤ 0}. (6)

III. ROBOT MODEL

Consider an n-DOF robotic system with the configuration
manifold Q. Let the configuration of the robot be denoted
by q, which is a set of coordinates on Q, and let q̇ be the
rate-of-change of the configuration q. Further, let the state
of the system be denoted by3 x := (q, q̇) ∈ T Q⊆R2n, where
T Q is the tangent bundle of Q. Then, the Euler-Lagrangian
dynamics of the robotic system is given by

D(q)q̈+C(q, q̇)q̇+G(q) = Bu, (7)

where D(q) ∈ Rn×n is the positive-definite inertia matrix,
C(q, q̇) ∈ Rn×n is the Coriolis-centrifugal matrix, G(q) ∈ Rn

is the vector of gravity terms, u ∈ Rm is the vector of
control inputs, and B ∈ Rn×m is the mapping of the control
inputs to the configuration coordinates. The dynamics (7) can
alternatively be expressed in the state-space form as

ẋ = f (x)+g(x)u, (8)

where f ,g are appropriately obtained. We assume that the
choice of q is such that the mapping of the control inputs to
the actuated coordinates is one-to-one, i.e., each column of
B consists of only one element with value one and the rest
are zeros. We have the following properties of the model [8]:

Property 1: D is positive definite symmetric, and Ḋ−2C
is skew-symmetric.

3With an abuse of notation we reuse x from Section II



Property 2: There exist positive constants cl , cu, such that
for any4 (q, q̇) ∈ T Q,
• cl ≤ ‖D(q)‖ ≤ cu
• cl ≤ ‖D−1(q)‖ ≤ cu
• ‖Ḋ(q)‖ ≤ cu|q̇|
• ‖C(q, q̇)‖ ≤ cu|q̇|
• |G(q)| ≤ cu.

Note that each of the matrices, D,D−1,C,G have their own
upper bounds. We have used the same constants for ease of
notations in the ensuing results (see for example, proof of
Theorem 1).

A. Error/output dynamics

For a fully actuated robotic system (m = n), we are
interested in tracking of time and state based desired config-
uration: qd(t,q) : R≥0×Q→Q. We assume that the desired
trajectory qd is sufficiently smooth and bounded and that its
first ∂qd

∂ t , and second ∂ 2qd
∂ t2 time derivatives are also uniformly

bounded. The error between a configuration q and the desired
configuration qd at a given time t is defined as

e(t,q) := q−qd(t,q). (9)

Differentiating (9) with respect to time gives

ė(t,q, q̇) = Je(t,q)q̇−
∂qd(t,q)

∂ t
, (10)

where Je is the Jacobian matrix of dimension n× n. We
will restrict our attention to qd for which Je is bounded and
invertible. By expressing the configuration and velocities q, q̇
in terms of e, ė, we obtain the dynamics as

De

(
ë+

∂ 2qd

∂ t2

)
+(Ce + Jd)

(
ė+

∂qd

∂ t

)
+Ge = J−T

e u, (11)

where De = J−T
e DJ−1

e , Ce = J−T
e CJ−1

e + J−T
e D d(J−1

e )
dt , Ge =

J−T
e G, Jd = De

∂

∂q (
∂qd
∂ t )J

−1
e .

For an underactuated robotic system (m < n), we define
the following relative degree two outputs:

y(t,q) = ya(q)− yd(t,q), (12)

where y : R≥0×Rn→Rm is of dimension m. This output is
the difference between the actual ya : Rn→ Rm and desired
values yd : R≥0×Rn → Rm. We have the following time-
derivatives of the outputs:

ẏ(t,q, q̇) = Jy(t,q)q̇−
∂yd(t,q)

∂ t
, (13)

where Jy is the Jacobian matrix of dimension m×n. Similar
to Je, we restrict our attention to bounded and full-row rank
Jy. We obtain the dynamics of the outputs as

ÿ− J̇yq̇+
∂ 2yd

∂ t2 +
∂

∂q
(

∂yd

∂ t
)q̇+ JyD−1(Cq̇+G) = JyD−1Bu.

(14)

4This property is always true for robots with pure revolute joints or
for robots with all of its prismatic joints preceding the revolute joints [8].
Even for the prismatic joints, like in spring deflections, we know that these
deflections are usually restricted by hardstops. This allows us to include a
larger class of mechanical systems.

In the next section, we particularize the CLF-QP presented
in Section II for the robot model discussed above, leveraging
Lyapunov functions developed for PD based control laws.

IV. PD BASED QPS: MODEL DEPENDENT

In this section, we introduce a CLF based QP motivated
by PD control laws for robotic systems [6], [14], [21], [28].
Consequently, the resulting QP is referred to as a PD-QP. We
will study both fully and underactuated systems. The PD-QPs
devised in this section require knowledge of the robot model,
however, this is relaxed in Section V.

A. Fully-actuated systems

For the fully actuated robotic system, we have the error
dynamics given by (11). It is important to note that the matri-
ces De, Ce have similar properties as that of D,C, including
Properties 1 and 2; see [21, Chap. 4, Sec. 5.4] for more
details. We choose the following PD based CLF candidate
motivated from the stability analysis in [28, Appendix]:

V (e, ė,q) =
1
2

eT Kpe+
1
2

ėT De(q)ė+α(e)eT De(q)ė, (15)

where Kp � 0 (i.e., a symmetric positive definite matrix of
appropriate dimension), and

α(e) :=
k0

1+ |e|
=

k0

1+
√

eT e
, (16)

where k0 ≥ 0 is a small non-negative number chosen such
that V is positive definite. For example, we can choose k0
that satisfies

k0 ≤
√
‖Kp‖‖De‖
‖De‖

. (17)

Using (4) and (5) on the V in (15), we can choose the
following explicit forms for ψ0 and ψ1:

ψ0 =
(
α(e)eT + ėT )(Kpe+Kd ė−De

∂ 2qd

∂ t2

−(Ce + Jd)
∂qd

∂ t
− Jd ė−Ge

)
ψ1 =

(
α(e)eT + ėT )J−T

e , (18)

with Kd � 0. The resulting QP, indeed, yields a feasible
solution, as can be verified by taking

u=−JT
e

(
Kpe+Kd ė−De

∂ 2qd

∂ t2 − (Ce + Jd)
∂qd

∂ t
− Jd ė−Ge

)
,

which satisfies the inequality constraint of (QP) with ψ0
and ψ1 given by (18). With this inequality, we obtain the
derivative V̇ as

V̇ =−
[

e
ė

]T
[

αKp
αKd−α̇De−αḊe

2
αKd−α̇De−αḊe

2 Kd−αDe

][
e
ė

]
, (19)

and the matrix in (19) can be ensured to be positive definite
by choosing a small enough k0 in α (possibly smaller than
the previously determined k0). This establishes asymptotic
stability of (e, ė).

It is worth nothing that if k0 = 0, then the resulting
V̇ in (19) is negative semi-definite, thereby satisfying the



conditions of a weak form of a Lyapunov function. In fact,
for a constant desired configuration, this weak form can be
used to establish asymptotic stability for the PD based control
law of the form

uPDG(e, q̇) =−Kpe−Kd q̇+G(e+qd), (20)

by LaSalle’s invariance principle; see [21, Chapter 4, Propo-
sition 4.9] for more details.

B. Underactuated systems

For underactuated systems, since m is the degree of
actuation (DOA) with m < n, we have the corresponding
degree of underactuation as l = n−m. To compute suitable
control laws to drive y, ẏ→ 0, we will be mainly using the
projection methods developed in [2]. These methods were
also used in [12] for operational space control, and in [13]
for whole body behaviors. We first replace the terms Bu in
(14) by

Bu = (1−N[(1−BBT )N]+)JT
y F (21)

where

N = (1− JT
y (JyD−1JT

y )
−1JyD−1), (22)

F is an auxiliary input in the output space, and the superscript
+ denotes the Moore-Penrose pseudo-inverse. The formula-
tion (21) is such that the first l rows are zero (to be consistent
with the underactuation). More details on the significance of
F and N can be found in [19, (18)]. With the new F , (14)
is reformulated as

Dyÿ+Cyq̇+ Jyd q̇+Gy +Dy
∂ 2yd

∂ t2 = F, (23)

where Dy = (JyD−1JT
y )
−1, Cy = DyJyD−1C −DyJ̇y, Jyd =

∂

∂q (
∂yd
∂ t ), and Gy =DyJyD−1G. It is evident that the dynamics

in (23) is similar to (11). Therefore, we choose the following
V for the underactuated system:

V (y, ẏ,q) =
1
2

yT Kpy+
1
2

ẏT Dy(q)ẏ+α(y)yT Dy(q)ẏ. (24)

With this choice of V , we obtain a cost for F , along with
the functions ψ0,ψ1, which are obtained as

ψ0 = (α(y)yT + ẏT )
(
Kpy+Kd ẏ+ Ḋyẏ

−(Cy + Jyd )q̇−Gy−Dy
∂ 2yd

∂ t2

)
ψ1 = (α(y)yT + ẏT ), (25)

for which a feasible solution is given by

F =−
(

Kpy+Kd ẏ+ Ḋyẏ− (Cy + Jyd )q̇−Gy−Dy
∂ 2yd

∂ t2

)
.

V. PD BASED QPS: MODEL INDEPENDENT

In this section we will focus on QP formulations that do
not depend on the model. Similar to the previous section, we
will first study fully actuated systems.

A. Fully actuated systems

In order to realize a model-free QP, we need a formulation
different than (18) that avoids the use of De,Ce,Jd ,Ge.
Therefore, we consider the following forms for ψ0,ψ1:

ψ0 = (α(e)eT + ėT )(Kpe+Kd ė)

ψ1 = (α(e)eT + ėT )J−T
e . (26)

The feasibility of the resulting QP can be verified by the
control law,

uPD(e, ė) =−Kpe−Kd ė, (27)

which satisfies the inequality in (QP) with the above choice
of ψ0 and ψ1. The intuition behind the choice of ψ0 and
ψ1 in (26) and the stability implications of the resulting QP
based control law are discussed in the following theorem.

Theorem 1: Consider the dynamical system given by (11),
and the set of control inputs K in (6) with ψ0,ψ1 given by
(26). Then for all locally Lipschitz control laws k(t,e, ė) ∈
K(t,e, ė), the resulting closed loop system obtained from (1)
is uniformly ultimately bounded.

Proof: Given that ∂qd
∂ t ,

∂ 2qd
∂ t2 are uniformly bounded, we

have that∥∥∥∥De
∂ 2qd

∂ t2

∥∥∥∥≤ cq,

∥∥∥∥(Ce + Jd)
∂qd

∂ t

∥∥∥∥≤ cq(|ė|+1),

‖Ge‖ ≤ cq, ‖Ḋeė‖ ≤ cq|ė|(|ė|+1), (28)

for some cq > 0. Let V be as expressed in (15). For ease of
derivation, we will separate the expression in V as

V0 =
1
2

eT Kpe+
1
2

ėT Deė, Vc = α(e)eT Deė. (29)

We obtain the derivatives as

V̇0 ≤eT Kpė+ ėT J−T
e u+ cq|ė|2 +3cq|ė|

V̇c ≤αeT J−T
e u+4cq|ė|2 +3cq|ė|+2αcq|e|. (30)

Adding the inequalities in (30) we obtain

V̇ ≤ eT Kpė+6cq|ė|+5cq|ė|2 +2αcq|e|+(αeT + ėT )J−T
e u.

Substituting for (αeT + ėT )J−T
e u via the inequality constraint

given by (26), we obtain

V̇ ≤−αeT Kpe− ėT Kd ė−αeT Kd ė+ k1|ė|2 + k2|ė|+αk3|e|, (31)

where k1 = 5cq,k2 = 6cq,k3 = 2cq. For convenience, we will
choose diagonal matrices for Kp,Kd with the scalar gains as
kp,kd respectively. Using the inequality −w2 +wv≤−w2

2 +
v2

2 in (31), we have

V̇ ≤−α
1
2

[
|e|
|ė|

]T[kp kd

kd
kd−k1

α

]
︸ ︷︷ ︸

Λ

[
|e|
|ė|

]
+

k2
2

2(kd− k1)
+

αk2
3

2kp
. (32)

Checking the positivity of the leading principal minors of
Λ, we can ensure that Λ � 0 by choosing a k0 satisfying
0 < k0 < kp(kd− k1)/k2

d , which is a parameter in α , defined
in (16).



Remark 1: If we choose the following for kp,kd ,k0:

kp = ε
2, kd = ε + k1, k0 =

ε

υ
, (33)

where ε > 1 is a tunable gain, and υ is picked in such a
way that Λ� 0 in (32), we have the following:

V̇ ≤− ελmin(Λ)

υ(1+ |e|)
|(|e|, |ė|)|2 + k2

2
2ε

+
k2

3
2υε(1+ |e|)

. (34)

Given the initial state (e(0), ė(0)) and the corresponding
level set of V , we can pick the largest value of |e| in this
sublevel set of V . By choosing a large enough ε , we can
arbitrarily shrink the constant terms in (34) to a small
enough value, resulting in smaller ultimate bounds.

B. Underactuated systems

In Section IV-B, we studied underactuated systems and
formulated the model based QP that yield asymptotic con-
vergence of the outputs of the robot. This QP computes
F , which is transmitted to the actuators through a model-
based mapping; see (21). Due to space constraints, we will
only study tracking of time varying trajectories, in particular,
outputs (12) of the following form:

yt(qa, t) := qa−qa
d(t), (35)

where the actual values are the actuated configuration qa,
and the desired values qa

d : R≥0 → Rm are only dependent
on time. Similar to qd for fully actuated systems, we assume
that qa

d , q̇
a
d , q̈

a
d are all bounded by a constant cq > 0. With

these outputs, we can use formulations analogous to (26) for
ψ0,ψ1 to obtain

ψ0 = (α(yt)yT
t + ẏT

t )(Kpyt +Kd ẏt)

ψ1 = α(yt)yT
t + ẏT

t . (36)

It is worth noting that due to the coupling between the
uncontrolled and controlled states of the robot, we cannot
guarantee convergence of the outputs. The stability properties
of PD-QPs for underactuated systems will be discussed in
future work due to space limitations. In the next section, we
will apply the QPs obtained so far on the example models.

VI. DISCUSSION AND SIMULATION RESULTS

In this section we will discuss the simulation results for
the various types of QPs described in Section IV and V, and
compare them with pertinent CLF-QPs in the literature.

A. Review of CLF-QPs in literature

The CLFs typically used in the literature for robotic
systems are by input-output (IO) linearization [3], [20], [22].
For a state dependent relative degree two output y, the IO
linearizing control law is of the form:

uIO(q, q̇,µ) = LgL f y(q, q̇)−1(−L2
f y(q, q̇)+µ), (37)

where Lg,L f are the Lie derivatives, and µ ∈ Rm is the
auxiliary control input. Feedback linearization results in a
linear system with µ as the new control input. Based on
LQR techniques, we obtain the Lyapunov function for this

linear system, VIO [22, eqn. (17)], which yields the IO-QP
formulation:

min
µ

µ
T

µ (IO-QP)

s.t. L fVIO(q, q̇)+LgVIO(q, q̇)uIO(q, q̇,µ)≤−γVIO(q, q̇),

where µ is affine in the inequality constraint (based on
(37)). γ > 0 is obtained from the continuous-time algebraic
Riccati equations (CARE) (see [3, eqns. (15)-(18)]). (IO-QP)
is evaluated for every state feedback x to yield an auxiliary
input µ(x). On account of the convexity of (IO-QP) for a
given x, a unique optimal5 µ(x) exists, which is then used
to compute u(x) according to (37). Additional constraints,
like torque limits, are also included with a relaxation term
δ > 0 to the CLF constraint (see [22, Section II.D, (24)]).

Since the IO-QP requires the full model of the system,
there are no guarantees of stability under modeling uncer-
tainty. A robust variant of the IO-QP (robust IO-QP) was
presented in [22], which, however, requires an estimate of the
bound on the modeling errors. If the actual modeling error
violates this bound, then the robust IO-QP cannot guarantee
convergence, potentially leading to failure. On the other
hand, if the estimate of the modeling error bound is chosen
too large, then the robust IO-QP may not be feasible. The
model independent PD-QP we provide in Section V avoids
these issues, primarily, because we do not require an estimate
of the modeling uncertainties, i.e., our approach works for
any bounded modeling errors6.

B. Cost

Similar to the methodology followed in [18, Section V],
we will use a reference input for the cost function in (QP):

(u−uref(t,q, q̇))T (u−uref(t,q, q̇)). (38)

For example, we can choose the control law (27) as uref
for our QP formulations. This promotes real-time conver-
gence by keeping the inputs close to a region where the
inequality constraints are satisfied, leading to lower compu-
tational loads. Note that a straightforward option for the cost
function would have been minimization of the torques (i.e.,
minimizing uT u), but, it was shown in [20, Section VII-A]
that this form of QP often suffers from discontinuity due to
vanishing constraints. Therefore, the actual CLF based QPs
implemented in the robotic systems in [3], [20], and also in
[22] were minimizing the difference between u and some
uref

7. Even [18] utilized cost functions that minimized the
difference between the actual and the reference accelerations.
A detailed analysis of the choice of cost functions will be
the subject of future work.

C. Results and comparison

We will test our controllers on two robot models: 1) a
cart-pole system and 2) a 5-DOF biped. A video comparing

5Optimality here refers to the solution of (IO-QP), µ(x), for a given x.
6It is worth noting that our uncertainty bounds are only on the inertial

parameters, and not on the states (as shown by (32)).
7Even (IO-QP) minimizes the auxiliary input µ .
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Fig. 1: Figure showing the cart-pole system on the left and
a 5-DOF bipedal robot on the right.

the performance of our controllers with those in the existing
literature is provided with the submission. A link to the video
is also available in [1].

1) Cart-pole system: Fig. 1 shows the cart-pole model
with cart having mass m1 = 5kg and the pole having mass
m2 = 1kg and length `= 1m. The states are cart position x,
velocity ẋ and pole angle θ , velocity θ̇ . We have assumed
full actuation in order to compare with the traditional QPs
existing in literature. The goal is to drive the state vector
to zero i.e., (x, ẋ,θ , θ̇)→ 0. Fig. 2 shows the comparison
between the traditional IO-QP (given by (IO-QP)), model
based PD-QP ((QP) with ψ0,ψ1 given by (18)), and model-
free PD-QP ((QP) with ψ0,ψ1 given by (26)), along with the
cost (38). For uref, we used (27) for both the model based
and model-free PD-QPs. Torque and Force limits for all the
QPs were set at 100N and 100Nm. Relaxations on the CLF
constraint were also introduced to ensure feasibility under
torque limits. Table III shows the exact QP formulation used.
As shown by Fig. 2, (IO-QP) fails for a 200% increase in
the masses m1 and m2, while the PD-QPs yield sufficient
tracking performances. It can also be observed that large
inertial terms introduce larger oscillations, however, these
oscillations can be reduced with larger gains.

2) 5-DOF underactuated biped: Fig. 1 shows the stick
figure of the bipedal robot used for the simulation. The con-
figuration is given by q = (q1, . . . ,q5). The first coordinate,
q1, is the calf angle and is underactuated, while the remaining
angles, stance and nonstance knee, stance and nonstance hip,
are actuated. Mass and other inertial properties of the robot
are provided in [31, Fig. 3b]. Since our focus here is only
on continuous dynamics, we will study trajectory tracking
control for only one step; an extension to multiple steps
would lead to a system with impulse effects that exhibits
a periodic orbit under disturbances, the analysis of which
can be approached in the manner of [26].

Since the outputs are defined as the difference between
the actual and the desired values (12), we will first define
the actual outputs ya for the biped model. The actual outputs
(ya) are given by

ya(q) =


−1 −1 −1 1 Lc

Lc+Lt
0 1 0 0 0
0 0 1 0 0
1 1 1 0 0

q, (39)

where Lc,Lt are the calf and thigh lengths respectively.
The rows of ya correspond to nonstance slope, stance knee

angle, nonstance knee angle, and the torso angle of the
robot respectively. Due to space constraints, we have only
provided the matrix in (39), and a detailed explanation for
the individual rows of ya are found in [4]. The desired outputs
yd are given by the canonical walking functions (CWFs) [4]:

yH(τ,α) = e−α1τ(α2 cos(α3τ)+α4 sin(α3τ))+α5, (40)

where α1−α5 are coefficients that are predetermined via an
offline optimization [31], [30]. τ is a parameterized function,
which is either represented by a monotonically increasing
phase variable or a scaled function of time. We will choose
the phase variable for the model based QPs, and time for the
model-free QP. The phase variable is obtained as

δ phip(q) = Lc(−q1)+Lt(−q1−q2). (41)

Since there are four outputs, there are four CWFs
yielding the desired outputs as the vector yd(t) :=
[yH(t,α1),yH(t,α2), . . . ,yH(t,α4)]T . Here, the superscript
for α represents the row index. In order to drive the actual
outputs to the desired outputs of the robot, we utilized the
model based and model-free PD-QPs presented in this paper
for underactuated systems, i.e., (QP) with (25) and (36). The
cost chosen was (38) with uref given by (27). For uniformity,
we have used the same cost for both the model based
and model-free PD-QPs. In addition, we have implemented
(IO-QP) and the robust IO-QP formulations from [22] for
comparison. More details about the QP formulations are in
Table II and III.

Controller Name QP Cost Model required?

IO-QP (IO-QP) µT µ Yes
Robust IO-QP See [22, (39)] µT µ No
Model based PD-QP (QP) with (25) (38) Yes
Model-free PD-QP (QP) with (36) (38) No

TABLE II: Table showing the list of controllers used on
the bipedal robot. It must be noted that Robust IO-QP did
not require the model, but required the uncertainty bound to
realize convergence.

To validate the proposed PD-QPs, we increased the mass
and other inertial properties of the robot by 200% from
the inertial properties used to design the controllers. Torque
limits of 5Nm along with the CLF relaxations (see Table III)
were imposed on all of the controllers listed in Table II. The
relaxation term δ has a large penalty value, which ensures
that only small violations of the convergence constraint are
allowed. However, the ultimate boundedness guarantees may
not necessarily be ensured with relaxation, and requires
further exploration. It can be observed in Fig. 3 that all
of the QPs, except the IO-QP, achieved sufficient tracking
for one step. Fig. 4 shows the Lyapunov function and the
corresponding torque profiles for both the model-based (top)
and the model-free (bottom) PD-QPs for one step. Note that
the Lyapunov function shows better convergence and smaller
ultimate bound for higher gains.

It is worth noting that, for both the cart-pole and biped
models, the model-based and model-free PD-QPs have sim-
ilar performances (see Fig. 2 and Fig. 3). This is due to
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Fig. 2: The left three figures are showing the time response for the cart-pole system. The dotted lines are for a perfect
model, and the solid lines are for a 200% model error. IO-QP yields convergence for a perfect model, but does not perform
well for the said modeling error. PD-QPs still yield convergence, albeit, with more oscillations due to higher inertia. The
right-most figure is showing the Lyapunov functions vs. time for all the three controllers for the 200% model error.

IO-QP (for both cart-pole and biped) Model based PD-QP (only used for cart-pole)

min
µ,u,δ

µ
T

µ +1000∗δ
2

s.t. L f VIO(q, q̇)+LgVIO(q, q̇)uIO(q, q̇,µ)≤−γVIO(q, q̇)+δ

u = uIO(q, q̇,µ)

|u| ≤ 100 N,Nm cart-pole
|u| ≤ 5 Nm biped

min
u,δ

(u−uref(t,q, q̇))T (u−uref(t,q, q̇))+1000∗δ
2

s.t. (α(e)eT + ėT )

(
Kpe+Kd ė−De

∂ 2qd

∂ t2 −Ce
∂qd

∂ t
−Ge + J−T

e u
)
≤ δ

|u| ≤ 100 N,Nm

Model based PD-QP (only used for biped) Model-free PD-QP (for both cart-pole and biped)

min
F,u,δ

(F−Fref(t,q, q̇))T (F−Fref(t,q, q̇))+1000∗δ
2

s.t. (α(y)yT + ẏT )

(
Kpy+Kd ẏ+

1
2

Ḋyẏ−Cyq̇−Gy−Dy
∂ 2yd

∂ t2 +u
)
≤ δ

Bu = (1−N[(1−BBT )N]+)JT
y F

|u| ≤ 5 Nm

min
u,δ

(u−uref(t,q, q̇))T (u−uref(t,q, q̇))+1000∗δ
2

s.t.
(
α(e)eT + ėT )(Kpe+Kd ė)+

(
α(e)eT + ėT )J−T

e u≤ δ cart-pole(
α(y)yT + ẏT )(Kpy+Kd ẏ)+

(
α(y)yT + ẏT )u≤ δ biped

|u| ≤ 100 N,Nm cart-pole
|u| ≤ 5 Nm biped

TABLE III: The QP formulations for the three controllers IO-QP, model based and model-free PD-QPs are shown above.
Some of the constraints are applied only to one of cart-pole, biped models, with the appropriate labels included on the side.
Video results are shown in the link [1].

the fact that for large enough gains Kp,Kd the nonlinear
terms play a small role in the tracking performances. This
is observed both in (19) and (32), where the derivatives of
the Lyapunov functions are largely influenced by the gain
matrices. However, model based PD-QP has lower ultimate
bounds than that of the model-free PD-QP, as shown by the
Lyapunov functions in Fig. 4.

VII. CONCLUSIONS

In this paper, we established methodologies for construct-
ing PD based QPs for robotic systems. PD based control
laws are known to exhibit low sensitivity to modeling errors,
and are very easy to implement for all kinds of trajectory
tracking applications. Capitalizing on this property, we have
formulated these PD based control laws in the form of QPs.
In addition to providing convergence guarantees for fully
actuated systems, we have shown that PD-QPs are robust
to scaling of the model parameters of the robot. We have
also verified our results in simulation with the two robot
models: cart-pole and a 5-DOF biped. Future work will
involve developing such PD-QP formulations for a wider
class of robotic systems, namely nonholonomic systems,
and hybrid robotic systems. We will also study formal
stability/boundedness guarantees for underactuated systems.
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