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Abstract — This paper presents a method for achieving robotic
walking on rough terrain through Human-Inspired Control. This
control methodology uses human data to achieve human like walking
in robots by considering outputs that appear to be indicative of
walking, and using nonlinear control methods to track a set of
functions called Canonical Walking Functions (CWF). While this
method has proven successful on a specific well-defined terrain, rough
terrain walking is achieved by dynamically changing the CWF that
the robot outputs should track at every step. To make the computation
more tractable Extended Canonical Walking Functions (ECWF) are
used to generate these desired functions instead of CWF. The state
of the robot, after every non-stance foot strike, is actively sensed
and a new CWF is constructed to ensure Hybrid Zero Dynamics
is respected for the next step. Finally, the technique developed is
implemented on different terrains in simulation. The same technique
is adopted experimentally on the bipedal robot AMBER and tested
on sinusoidal terrain. Experimental results show how the walking gait
morphs based upon the terrain, thereby justifying the theory applied.

Keywords: Bipedal robotic walking, rough terrain naviga-
tion, human-inspired control

I. INTRODUCTION

Inspired by the capacity to navigate over rough terrain,
bipedal walking represents a challenge in itself in disaster
scenarios. Bipedal robots are one of the best means of lo-
comotion (if not the best) on any random terrain, since they
have a very small footprint and can display a wide variety of
motion primitives to address the difficult problems associated
with motion planning.

Despite the fact that the problem of walking on a random
terrain is seemingly simple to humans, it remains a difficult
problem to solve in the context of bipedal robots. Out of the
many approaches used, the concept of Zero Moment Point
([11]) is popular and has been used extensively. But, this
technique assumes that the robot has feet and they are flat all
the time (which is very “un-human-like”). Walking has also
been studied by viewing the robot as an inverted pendulum in
[6], [10], and [5], [9] uses the idea of passive dynamic walking
in robots. [12] uses the concept of Hybrid Zero Dynamics
to create a low dimensional representation that yields stable
walking with point feet. Motivated by Hybrid Zero Dynamics,
Human-Inspired Control was introduced in order to create
more human-like walking gaits through the use of human-
inspired output functions, and achieve flat-ground walking

with AMBER [3], [13]. Human-Inspired Control is heavily
influenced by the way humans actuate their joints through
Central Pattern Generators (CPG) to realize walking (see [8]).
The idea is to track a set of functions (termed Canonical
Walking Functions (CWF)) which emulate the trajectories of
human walking. While these methods have been utilized to
achieve rough terrain walking through the inherent robustness
of the human-inspired controllers, the current framework lacks
a formal way for addressing rough terrain locomotion in the
context of human-inspired control.

This paper presents a method to address this gap by
using the concept of Intermediate Motion Transitions along
with Human-Inspired Control. We argue that, depending on
the terrain, appropriate patterns are injected during human
locomotion to get the “right” kind of walking. Here “right”
could mean stability, power consumption, speed of execution,
feasibility etc. (flat-ground walking that was achieved with
AMBER [13] can be considered to be one such pattern).
Since the list of possibilities of a terrain is never ending, it
is not possible to store infinitely large number of patterns in
the robot. Hence, we claim that for a specific terrain with
small variations, we can generate patterns (or CWF) from the
reference walking function dynamically, and the extent of the
variations are decided by the feasibility of implementation and
stability of the robot. In this paper, we choose flat ground, and
use the reference CWF for flat ground (obtained from [13]).
The walking is achieved in such a way that it respects Hybrid
Zero Dynamics; this implies that the actuated outputs of the
robot are tracking the desired functions even through impacts.
Then, we allow small perturbations in the terrain, i.e., allow
small changes in slopes (γ) and generate new CWF in such a
way that it brings it back to normal flat ground walking mode.

This paper begins with a description of the bipedal robot
AMBER and its model in Section II; we then give a brief
overview of the control strategy used to achieve walking in
simulation. Section III describes our method for achieving
parameters for these human-inspired controllers by reviewing
the optimization and related constructions used to find these
parameters. In Section IV, our method for computing ECWF
that allow for transitions back to nominal walking behaviors is
presented. Finally, the method for computing the intermediate
surfaces for rough terrain is implemented in AMBER and
analyzed in Section V.



II. ROBOT MODELING AND CONTROL

Walking involves alternating phases of continuous and
discrete dynamics. Hence it is modeled as a hybrid control
system H C = (X ,U,S,∆, f ,g) (see [3], [4] for a formal
definition). For our planar robot, AMBER, which has 5 links
(2 calves, 2 thighs and a torso, see Fig. 1), we can define
the configuration space Q, defined by the joint angles: θ =
(θs f ,θsk,θsh,θnsh,θnsk)

T , where θ represents the joint angles
of stance and non-stance feet, stance and non-stance knees,
stance and non-stance hips. Note that the walking will be
achieved in a 2D robot, and therefore it is supported in
the lateral plane via a boom; this boom does not provide
support to the robot in the sagittal plane. This means that
the torso, through which the boom supports the robot, can
freely rotate around the boom. The boom is fixed rigidly to
a sliding mechanism (Fig. 2). In addition, AMBER’s feet are
not actuated and is thus an underactuated robot.
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Fig. 1: The biped AMBER (left), the angle conventions
(center), and the SolidWorks model of AMBER (right).

For the hybrid control system considered, H C , X ⊂ T Q is
the domain given by the constraint hR(θ)≥ 0, where hR is the
height of the non-stance foot, U ⊂R4 is the set of admissible
controls, S ⊂ X is the guard given by hR = 0, ∆ is the reset
map which provides an instantaneous change in velocity at
foot strike, and ẋ = f (x)+ g(x)u, with x = (θ T , θ̇ T )T ∈ R10

Fig. 2: AMBER Experimental Setup showing the boom and
the treadmill. The treadmill is raised up and down to emulate
the rough terrain through a linear actuator shown in the back.

and u the torque input, is a control system obtained from the
Lagrangian of the robot:

L(θ , θ̇) =
1
2

θ̇
T D(θ)θ̇ −V (θ). (1)

Including the DC motor model results in a new control system:
ẋ = fv(x)+gv(x)Vin, with voltage, Vin, being the control input.
See [14] for more details.
Human-Inspired Control. This section reviews human-
inspired control which is the approach we use to achieve
walking both in simulation and experiment on a given known
terrain. For simplicity, we will describe the control law for flat
ground walking which are described in detail in [4] (also see
[3] for related results in the case of full actuation and [14] for
results on other kinds of terrains). The idea will be to extend
flat ground walking to rough terrain with minimal variations.
Human Outputs and Walking Functions. As suggested by
the name, Human-Inspired Control involves using human data
to inspire the development of controllers that provably result in
robotic walking. While there are several ways to use the human
data, we pick simple linear combinations of joint angles and
specifically term them “human outputs” (see [3] for details).
The idea is to produce a low-dimensional representation for
bipedal walking by using these outputs. Since AMBER has 5
links, it is necessary to chose to pick 5 human outputs which
are completely going to represent AMBER walking. The five
outputs are:

1) The linearization of the x-position of the hip, phip:

δ phip(θ) = Lc(−θs f )+Lt(−θs f −θsk), (2)

2) The linearization of the slope of the non-stance leg mnsl ,
(the tangent of the angle between the z-axis and the line
on the non-stance leg connecting the ankle and hip):

δmnsl(θ) =−θs f −θsk−θsh +θnsh +
Lc

Lc +Lt
θnsk. (3)

3) The angle of the stance knee, θsk,
4) The angle of the non-stance knee, θnsk,
5) The angle of the torso from vertical,

θtor(θ) = θs f +θsk +θsh. (4)

A similar idea was also used in [7] where the authors use the
terminology “constraints” as opposed to “outputs”, and which,
evidently, are constrained to realize bipedal walking.

Having defined the outputs, we make the following obser-
vations from the human data: the linearized position of the hip
is a linear function of time:

δ pd
hip(t,v) = vhipt, (5)

Inspection of the other outputs indicates that they appear to
act like the time solution to linear mass-spring-damper systems
(see [3]), which motivates the introduction of the Canonical
Walking Function (CWF):

yH(t,α) = e−α4t(α1 cos(α2t)+α3 sin(α2t))+α5. (6)



Human-Inspired Outputs. Having defined the outputs, we
can construct a controller that drives four of the outputs
of the robot (hip position is omitted since AMBER is an
underactuated robot and it is not possible to drive five outputs
with four actuators) to the outputs of the human, as represented
by the CWF: ya(θ(t))→ yd(t,α), with:

yd(t,α) = [yH(t,αnsl),yH(t,αsk),yH(t,αnsk),yH(t,αtor)]
T ,

ya(θ) = [δmnsl(θ),θsk,θnsk,θtor(θ)]
T , (7)

where yH(t,αi), i ∈ {nsl,sk,nsk, tor} is the CWF (6) but
with parameters αi specific to the output being considered.
Grouping these parameters with the velocity of the hip, vhip,
that appears in (5), results in the vector of parameters α =
(vhip,αnsl ,αsk,αnsk,αtor) ∈ R21.

We can remove the dependence of time in yd(t,α) based
upon the fact that the (linearized) position of the hip is
accurately described by a linear function of time:

τ(θ) = (δ pR
hip(θ)−δ pR

hip(θ
+))/vhip, (8)

where δ pR
hip(θ

+) is the linearized position of the hip at the
beginning of a step. θ+ is the configuration where the height
of the non-stance foot is zero, i.e., hγ(θ

+) = 0. Using (8), we
define the following human-inspired output:

yα(θ) = ya(θ)− yd(τ(θ),α). (9)

Control Law Construction. The outputs were chosen so that
the decoupling matrix, A(θ , θ̇) = LgL f yα(θ , θ̇) with L the
Lie derivative, is nonsingular. Therefore, we can define the
following torque controller:

u(α,ε)(θ , θ̇) = (10)

−A−1(θ , θ̇)
(
L2

f yα(θ , θ̇)+2εL f yα(θ , θ̇)+ ε
2yα(θ)

)
.

In other words, we can apply feedback linearization to obtain
the linear system on the human-inspired output: ÿα =−2ε ẏα−
ε2yα . More details can be found in [13]

III. HUMAN-INSPIRED HYBRID ZERO DYNAMICS (HZD)

The goal of the human-inspired controller (10) was to drive
the outputs of the robot to the outputs of the human: ya→ yd
as t→ ∞. Yet due to the occurrence of the impact with every
step, this may not be true all the time. Therefore, the goal
of this section is to find the CWF for which this is satisfied;
the end result is that these outputs will define the hybrid zero
dynamics surface.
Problem Statement. Since AMBER is underactuated, θs f and
θ̇s f cannot be controlled. This leads to the notion of using
the zero dynamics surface which has a dimension of 2. The
control law is applied in such a way that the controllable
outputs are forced to 0 as t→∞. As long as these outputs are
exponentially stable, we can realize a surface which represents
bipedal robotic walking. Therefore, with the human-inspired
controller applied, we say that the controller renders the zero
dynamics surface:

Zα = {(θ , θ̇) ∈ T Q : yα(θ) = 0, L f yα(θ , θ̇) = 0} (11)

exponentially stable; moreover, this surface is invariant for
the continuous dynamics. Note that here 0 ∈ R4 is a vector
of zeros and we make the dependence of Zα on the set of
parameters explicit. It is at this point that continuous systems
and hybrid systems diverge: while this surface is invariant
for the continuous dynamics, it is not necessarily invariant
for the hybrid dynamics. In particular, the discrete impacts
in the system cause the state to be “thrown” off of the zero
dynamics surface. Therefore, a hybrid system has Hybrid Zero
Dynamics (HZD) if the zero dynamics are invariant through
impact: ∆(S∩Zα)⊂ Zα .

The goal of human-inspired HZD is to find parameters α∗

that solve the following constrained optimization problem:

α
∗ = argmin

α∈R21
CostHD(α) (12)

s.t ∆(S∩Zα)⊂ Zα (HZD)

with CostHD the least squares fit of the CWF with the human
data. This determines the parameters of the CWF that gave
the best fit of the human walking functions to the human
output data, but subject to constraints that ensure HZD. To get
provable and physically realizable walking, other constraints
are imposed like non-stance foot height clearance, torque and
velocity constraints (see [13]). The optimization also produces
a fixed point (θ(ϑ(α)), θ̇(ϑ(α))) of the periodic gait which
can be used to compute the transitions on rough terrain. Space
constraints limit the explanation of the guard configuration of
the robot, ϑ(α), but it can be found in [4].
Zero Dynamics. With the control law ensuring HZD, we can
explicitly construct the zero dynamics surface. In particular,
we utilize the constructions in [12], reframed in the context of
canonical human walking functions. In particular, we define
the following coordinates for the zero dynamics:

ξ1 = δ pR
hip(θ) =: cθ (13)

ξ2 = D(θ)1,1θ̇ =: γ0(θ)θ̇

where c ∈ R5×1 is obtained from (2), and D(θ)1,1 is the first
row of the inertia matrix in (1). Moreover, since ξ1 is just the
linearized position of the hip, which was used to parameterize
time (8), we can write yd(τ(θ)) = yd(ξ1).

Due to the fact that we considered linear output functions,
from (2)-(4) we can write ya(θ) = Hθ for H ∈R4×5 with full
row rank. Therefore, defining

Φ(ξ1) =

[
c
H

]−1(
ξ1

yd(ξ1)

)
Ψ(ξ1) =

[
γ0(Φ(ξ1))

H− ∂yd(ξ1)
∂ξ1

c

]−1(
1
0

)
(14)

it follows that for θ = Φ(ξ1) and θ̇ = Ψ(ξ1)ξ2 that (θ , θ̇) ∈
Zα . Finally, the zero dynamics evolve according to the ODE:

ξ̇1 = κ1(ξ1)ξ2 κ1(ξ1) := cΨ(ξ1) (15)

ξ̇2 = κ2(ξ1) κ2(ξ1) :=
∂V (θ)

∂θs f

∣∣∣∣
θ=Φ(ξ1)

with V the potential energy of the robot obtained from (1).



IV. WALKING ON ROUGH TERRAIN

This section will introduce the methods adopted to achieve
Hybrid Zero Dynamics on rough terrain. On flat ground, the
zero dynamics surface (Zα ) derived from the CWF (α) is
respected i.e., the robot will exhibit Hybrid Zero Dynamics.
When the non-stance foot hits the ground, we say that the
robot strikes the guard, S. But, on an uneven terrain, the
robot could strike a different guard, Sint , altogether, i.e., when
the non-stance foot hits the ground at a height hR 6= 0, then
the resulting post-impact state, x+ = (θ+, θ̇+), may not be
on the same surface. This calls for defining a new set of
CWF in such a way that the post-impact state of the robot
resides on the resulting new zero dynamics surface (call it the
intermediate zero dynamics surface, Zα

int ). This effectively
reduces the problem to finding the new CWF, the resulting
intermediate zero dynamics surface for which contains the
post-impact state. Given the post-impact state obtained due
to the non-zero height (hR) of non-stance foot, x+, we find
the new CWF by computing the new set of parameters for the
next step, α int .

Extended Canonical Walking Function (ECWF). Given the
canonical walking function in (6), we have the robot outputs
and their derivatives:

ya(θ
+) = Hθ

+, dya(q̇+) =
Hθ̇+

ξ̇
+
1

, (16)

where ξ̇
+
1 = cθ̇+ (from (13)) is the post-impact hip velocity

and dya is effectively the derivative of the outputs divided
by the post-impact hip velocity. The reason for dividing by
the hip velocity is to make the outputs independent of the
hip velocity and based on the fact that if HZD is respected
for one hip velocity on the guard (S∩Zα ), then it must be
respected for all hip velocities on the same guard (S∩Zα ).
This is proved in [12] for the case of underactuated walking.

We can design α int in such a way that it brings the state
of the robot back to the zero dynamics surface for flat ground
walking. To be more precise, if the next step were to occur
on flat ground, then the intermediate surface, Zα

int , will lead
the state of the robot back to the original surface Zα . In other
words, the construction of α int will allow the guard of Zα

int

to intersect with the guard of Zα .
The end of the step for flat ground walking, x− = (θ−, θ̇−),

can be computed from, x− = (θ(ϑ(α)), θ̇(ϑ(α))). The corre-
sponding outputs and their derivatives are:

ya(θ
−) = Hθ

−, dya(θ̇
−) =

Hθ̇−

ξ̇
−
1

, (17)

with ξ̇
−
1 = cθ̇− being the hip velocity at the end of the step

(again, the end of this intermediate step is assumed to be on
flat ground).

Since the desired outputs should equal the outputs of the
robot to ensure hybrid invariance, the goal will be to find α int

for which the following is satisfied:

ya(θ
+) = yd(τ(θ

+),α int), dya(θ̇
+) =

∂yd(τ(θ
+),α int)

∂ξ
+
1

,

ya(θ
−) = yd(τ(θ

−),α int), dya(θ̇
+) =

∂yd(τ(θ
−),α int)

∂ξ
−
1

,

(18)

where τ is the time parameterized by hip position given in (8).
Since there are four outputs, and ya(θ) ∈ R4, (18) has

16 equations with the unknown being α int ∈ R21. Due the
way the CWF was constructed, finding a solution (or one of
the solutions) to the 16 nonlinear complex equations will be
time consuming and may not be guaranteed. This motivates
introducing a new function called the Extended Canonical
Walking Function (ECWF):

yHe(t,α) = e−α4t(α1 cos(α2t)+α3 sin(α2t))+α5 cos(α6t)+
2α5α4α2

α2
2 +α2

4 −α2
6

sin(α6t)+α7,

(19)

which has seven parameters and four of the parameters can be
written in vector form, αv = [α1,α3,α5, α7]

T which are linear
in the expression and can be separated out in the following
manner:

LTV (t,α) =


e−α4t cos(α2t),
e−α4t sin(α2t),

cos(α6t)+ 2α4α6
α2

2+α2
4−α2

6
sin(α6t),

1

 ,
yHe(t,α) = LTV T (t,α)αv, (20)

where LTV is the linear transformation vector containing the
remaining expression which becomes a constant vector by
keeping α2,α4,α6 constant. Similarly, we can define the partial
derivative of the desired extended outputs:

LTVd(t,α) =


−α4e−α4t cos(α2t)−α2e−α4t sin(α2t),
−α4e−α4t sin(α2t)+α2e−α4t cos(α2t),

−α6 sin(α6t)+ 2α4α2
6

α2
2+α2

4−α2
6

cos(α6t),

0

 ,
dyHe(t,α) =

∂yHe(t,α)

∂ξ1
= LTV T

d (t,α)
∂ t

∂ξ1
αv. (21)

LTVd is the time derivative of LTV ; and from (8) and (13), it
follows that ∂ t

∂ξ1
= v−1

hip.
We can now use the ECWF, to replace (7) with:

yde(τ,α) =


yHe(τ,αnsl)
yHe(τ,αsk)
yHe(τ,αnsk)
yHe(τ,αtor)

 ,
∂yde(τ,α)

∂ξ1
=


dyHe(τ,αnsl)
dyHe(τ,αsk)
dyHe(τ,αnsk)
dyHe(τ,αtor)

 , (22)



which is obtained from the new set of parameters, α =
(vhip,αnsl ,αsk,αnsk,αtor) ∈ R29. Accordingly, the new desired
outputs (22) will replace the desired outputs in (18) resulting in
16 linear equations with 29 unknowns. Note that the control
law in (10) will bear no change with yd replaced with yde
and the hybrid invariance will still be valid. By keeping vhip
and α2,α4,α6 of all outputs constant, (18) will contain 16
unknowns, and can be solved for in a straightforward manner.
In other words, α int will contain the new set of parameters
where α2,α4,α6’s of outputs are same as in α , and others are
obtained by solving for (18) through (22). To illustrate, we
will consider one of the outputs, the stance knee angle, θsk,
resulting in:

ysk(θ
+) = θ

+
sk , dysk(θ̇

+) =
θ̇
+
sk

ξ̇
+
1

,

ysk(θ
−) = θ

−
sk , dysk(θ̇

−) =
θ̇
−
sk

ξ̇
−
1

, (23)

and (18) yields:

ysk(θ
+) = yHe(τ(θ

+),α int
sk ), dysk(θ̇

+) = dyHe(τ(θ
+),α int

sk ),

ysk(θ
−) = yHe(τ(θ

−),α int
sk ), dysk(θ̇

−) = dyHe(τ(θ
−),α int

sk ).
(24)

Applying (20) and (21) to (24) yields:
ysk(θ

+)
dysk(θ̇

+)
ysk(θ

−)
dysk(θ̇

−)

=


LTV T (τ(θ+),αsk)

LTV T
d (τ(θ+),αsk)v−1

hip
LTV T (τ(θ−),αsk)

LTV T
d (τ(θ−),αsk)v−1

hip

αv, (25)

which yields a unique solution for αv, if the matrix on the
R.H.S. of (25) is invertible. The invertibility is maintained by
the choice of α2,α4,α6. This procedure remains the same for
the remaining output parameters.

It is important to note that we can apply this transformation
even when h+R = 0, resulting in the set of parameters α int

matching with the original parameters α . This means that we
can repeatedly apply this transformation irrespective of the
height after every step resulting in HZD on flat ground too.

The suggested method was implemented on two kinds of
terrain. The first kind was generated from a pseudo-random
number generator varying between −20 and 20. The phase
portrait and the outputs of the resulting walking are shown
in Fig. 3. The second kind was a sinusoidal terrain with an
amplitude of 20 and a frequency of 0.1Hz. The phase portrait
and the outputs are shown in Fig. 3. Simulated videos for both
random and sinusoidal terrains can be found at [2].

V. EXPERIMENTAL IMPLEMENTATION AND RESULTS

AMBER is powered by DC motors, and therefore the type
of control law suggested in (10) requires knowing the model
parameters of the robot. Instead, by looking at the joint angles
obtained from the absolute encoders, we adopt a simple linear
control law: Vin =−Kpyα(θ), where Vin is the vector of voltage
inputs to the motors and Kp is the proportional constant. More
details can be found in [13]. Since we adopt a different control
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Fig. 3: Phase portraits and outputs of AMBER walking over
a random terrain (left) and a sinusoidal terrain (right).

law, the walking in AMBER will not exhibit hybrid zero
dynamics. Yet, we will pick the hip position of the robot,
ξ1 and find corresponding state of the robot on the surface
and get the post-impact state. The reasoning we apply is that
if the canonical walking functions picked give walking with
AMBER, then its variants around the region specified by the
hip position and the resulting intermediate ECWF should also
yield walking with AMBER. Therefore, if ξ ∗1 = cθ ∗ is the hip
position when the non-stance foot strikes the uneven terrain,
we scale the hip position to match with the guard on the zero
dynamics surface, kξ ∗1 . With this hip position, the state, x+, is
reconstructed from the zero dynamics surface by using (14):

x+ = ∆(

[
Φ(kξ ∗1 )

∂Φ(kξ ∗1 )
∂ξ ∗1

vhip

]
), (26)

where ∆ gives the post-impact map from the reconstructed
state. Accordingly, the intermediate transition matrix is ob-
tained as described in Section IV. It is important to note that
this transition matrix is dynamically updated in AMBER after
every non-stance foot strike. Tiles of AMBER walking over
a rough terrain for one step are shown in Fig. 4, and Fig. 6
shows the variation of outputs of the robot on the sinusoidal
terrain (see video [1]). Fig. 5 shows all the ECWF computed
from the updated α int after every step, and they are compared
with the human data.

VI. CONCLUSIONS

This paper presented a method for dynamically updating
the parameters of the canonical walking function utilized
in human-inspired control in order to realize robotic walk-
ing on rough terrain. In particular, the extended canonical
walking function was introduced and a novel method for
determining the parameters of this function was given. Then
end result was the ability to dynamically create a hybrid
zero dynamics surface that returns the robot to its nominal
walking gait. Applying this method to the bipedal robot
AMBER experimentally resulted in walking on rough terrain.



Fig. 4: Tiles showing AMBER taking one step on the rough terrain. It can be observed that the configuration of the robot
at the end of the step is different from the beginning of the step. In other words, AMBER is doing the transition from its
intermediate pose to its normal flat ground walking pose.

Fig. 5: Desired output functions from the intermediate transition matrix α int computed at all the steps (red waveforms) and
compared with the human data (shown in blue).
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Fig. 6: Comparison of outputs of the robot with the desired
outputs. Since the stance knee takes the weight of the robot,
it does not match with the desired output well.

It is important to note that the walking results presented
represented significant improvements in the ability of the robot
to walk on rough terrain. Since the intermediate walking
functions yield different steady state walking speeds with the
robot, it will move backward and forward w.r.t. the treadmill
which is set at constant speed. In addition, the improvement
in walking is observed thereby justifying the advantage of
applying intermediate motion transitions. In fact, applying the
transitions makes the walking on rough terrain not just smooth,
but also more human-like.
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