
Trajectory based Deep Policy Search for Quadrupedal Walking

Shishir Kolathaya, Ashish Joglekar, Suhan Shetty, Dhaivat Dholakiya, Abhimanyu, Aditya Sagi,
Shounak Bhattacharya, Abhik Singla, Shalabh Bhatnagar, Ashitava Ghosal, Bharadwaj Amrutur

Abstract— In this paper, we explore a specific form of
deep reinforcement learning (D-RL) technique for quadrupedal
walking—trajectory based policy search via deep policy net-
works. Existing approaches determine optimal policies for each
time step, whereas we propose to determine an optimal policy
for each walking step. We justify our approach based on the
fact that animals including humans use “low” dimensional
trajectories at the joint level to realize walking. We will
construct these trajectories by using Bézier polynomials, with
the coefficients being determined by a parameterized policy. In
order to maintain smoothness of the trajectories during step
transitions, hybrid invariance conditions are also applied. The
action is computed at the beginning of every step, and a linear
PD control law is applied to track at the individual joints. After
each step, reward is computed, which is then used to update
the new policy parameters for the next step. After learning an
optimal policy, i.e., an optimal walking gait for each step, we
then successfully play them in a custom built quadruped robot,
Stoch 2, thereby validating our approach.

Keywords: Deep-RL, Quadruped

I. INTRODUCTION

Reinforcement learning has seen a lot success in a variety
of robotic systems such as ping pong playing robots [1],
autonomous helicopters [2], to name a few. Deep reinforce-
ment learning (D-RL) is a more recent trend, which was
successfully implemented to realize quadrupedal walking in
Minitaur [3], Stoch [4], and bipedal walking in Cassie [5].
This success is mainly attributed to the policy search based
methods [6], [7], [8] which are very effective for infinite
dimensional state and action spaces.

Deep Neural networks (DNNs) are a popular choice for
parameterizing both the policy and value networks for re-
inforcement learning. Furthermore, due to the availability
of powerful tools for computation of policy and policy
gradients, namely TensorFlow, PyTorch, it is easier and
faster to deploy the learning algorithms both in simulation
and hardware today. Reference [3] demonstrated walking
in the quadrupedal robot Minitaur by using 30 parallel
agents [9]. Actions are computed from the policy network

*This work is supported by DST INSPIRE Fellowship IFA17-ENG212,
and Robert Bosch Center for Cyber Physical Systems, IISc, Bengaluru.

S. Kolathaya is an INSPIRE Faculty Fellow and S. Bhatnagar, A.
Ghosal, B. Amrutur are with the faculty of the Robert Bosch Cen-
ter for Cyber Physical Systems, Indian Institute of Science, Bengaluru,
India. email: {shishirk,amrutur,shalabh,asitava}
at iisc.ac.in

A. Joglekar, S. Shetty, D. Dholakiya, Abhimanyu, A. Sagi, S.
Bhattacharya, A. Singla are with the technical staff of the Robert Bosch
Center for Cyber Physical Systems, Indian Institute of Science, Bengaluru,
India. {ashishj,dhaivatd,shounakb,abhiksingla}
at iisc.ac.in, {suhan.n.shetty,aditya.sagi13}
at gmail.com

Fig. 1: Figure showing the custom built quadruped robot,
Stoch 2. Simulated version is shown in the left, and the actual
hardware is shown in the right.

and then applied on the robot in the form of joint angle
commands during every time step. The incremental reward
obtained, e.g., distance travelled, is observed and the policy
parameters are updated accordingly. This methodology was
also followed in the bipedal robot Cassie [5], where the
policy parameters were used to improve upon an existing
reference trajectory in every time step. The resulting policy
learned is on par with the existing classical methods used
for Cassie.

With a view towards a more rigorous analysis of the
policies obtained from D-RL, it is important to revisit some
of the traditional methodologies followed to realize walk-
ing in both bipeds and quadrupeds. In fact, traditional RL
algorithms used parameterized functions of time that were
played in a loop from start to finish [10], [11]. RL was
used to determine the coefficients in these functions, and
then policy gradients were used to update these coefficients.
It is also worth noting that [4] focused on realizing gaits in
simulation via deep policy networks, but the experimental
implementation did not require the use of these networks.
In fact, with the help of principal component analysis
(PCA), kinematic motion primitives were extracted from
the simulated gaits and were deployed in the quadrupedal
robot, Stoch, resulting in stable walking. Moreover, multiple
types of locomotion, namely, trot, bound, gallop and walking
gaits were realized by one instance of training. This result
demonstrated that despite the complexity in the policies, the
resulting trajectories that yielded stable walking were “low”
dimensional.

The presence of low dimensional trajectories is not only
true in the gaits obtained from D-RL, but also prevalent in
biology. It was shown in [12] that the walking in quadrupeds
(like horses) inherently contained some basic patterns that



Fig. 2: Figure on the right shows the highlighted leg, the
top left figure shows the five-bar linkage, and the bottom
left figure shows five-bar linkage divided into two serial 2-R
linkages. The polar coordinates are also shown.

were consistent across different gaits. Oscillators located in
the spinal cord generated these patterns that resulted in a
variety of locomotion gaits. A similar study was conducted
in human walking in [13], wherein it was shown that the
hip and knee angle trajectories had characteristics of an
excited spring-mass-damper system. This observation lead to
the realization of canonical walking functions in a series of
robots AMBER1 [14], DURUS [15], and DURUS-2D [16].
This shows that in order to realize optimal gaits in hardware
it is sufficient to search for low dimensional functions of time
that yield a stable gait. Therefore, in this paper, we present a
trajectory based policy search method for realizing walking
gaits for the custom built quadruped robot Stoch 2 (Fig. 1).

We will construct the parameterized functions of time for
Stoch 2 by using Bézier polynomials. A similar methodology
was followed in [17], wherein a Bézier based optimization
was used for passive neural control of all the four legs.
Other choices are also available, for example, trigonometric
functions, which are equally powerful. The policy network
observes the current pose from the robot and determines the
coefficients of the Bézier polynomials. These polynomials
are played from start to finish and tracked by an appropriate
control law to obtain the rewards, which are then used
to update the policy parameters. This procedure not only
reduces the frequency of update of the policy network, but
also yields a jerk-free trajectory that satisfies positional and
velocity limits in each joint. Towards the end we will show
the effectiveness of these trajectories by demonstrating in the
hardware platform Stoch 2.

The paper is structured as follows. In Section II, we will
present Stoch 2 model. In Section III, we will present the
D-RL framework that describes the entire procedure for
realizing walking gaits in Stoch 2. Finally, in Section IV,
we will provide the main results along with the video.

II. ROBOT DESCRIPTION

Stoch 2 is a quadrupedal robot designed and developed
in-house at the Indian Institute of Science (IISc), Bangalore,

India. It is the second generation robot in the Stoch series
[4], [18]. In this section, we will briefly provide the hardware
description of Stoch 2.

The robot is divided in three modules: two body modules
and one central module. The body modules are connected
via the central module. The overall size and form factor
of the robot is similar to Stoch [18]. Each body module
is composed of two legs, and each leg contains three
actuators—hip flexion/extension, hip abduction and knee
flexion/extension. However, the simulation model only uses
the hip flexion/extension and knee flexion/extension motions
while keeping the abduction locked in position. This enables
the leg to follow a given trajectory in a plane (see Fig. 2
and Table I). The central module is rigidly connecting the
front and back body modules. The URDF model used in the
simulator was created directly from the SolidWorks assembly
(see Fig. 1). Overall, the robot simulation model consists of 6
base degrees-of-freedom and 8 actuated degrees-of-freedom.

A. Kinematic Description

Each leg comprises of a parallel five-bar linkage mecha-
nism where two of the links are actuated as shown in Fig. 2.
This enables the end foot point to follow the given trajectory
in a plane. The two actuators which control the motion of
upper hip and knee linkages are mounted on a fixed link.
These actuated linkages in turn connect to the lower linkages
via revolute joints. The key specifications of the robot leg are
summarized in Table I.

In this paper, we focus on realizing trajectories of the feet
in polar coordinates (more details in Section III). Hence,
given the trajectory, we obtain the desired motor angles by
using a custom inverse kinematics solver. As seen from Fig
2, the five-bar linkage is divided into two serial 2-R linkages
and solved for each branch. The details of the equations for
a serial 2-R linkage can be found in [18]. Safety limits are
also included in the inverse kinematic solver to avoid singular
positions.

B. Feedback Control

The base position pb ∈ R3, base orientation ob ∈ SO(3),
and the 4× 2 joint motor angles q ∈ R8 form the configura-
tion of the robot. The control u ∈ R8 power the motors via
a servo drive.

We consider one step to be either the protraction (stance)
or retraction (swing) of the leg. Therefore, we employ the

Parameter Value
total leg length 245 mm
upper hip link length 120 mm
lower hip link length 145 mm
upper knee link length 40 mm
lower hip link length 155 mm
min./max. hip joint -45◦/ 45◦
min./max. knee joint -70◦/ 70◦
min./max. spine front joint -15◦/ 15◦
min./max. spine back -15◦/ 15◦
max hip and knee torque 67 kg-cm
actuator power (servo) 72 W

TABLE I: Robot leg specifications.



following trajectory tracking control law for the motors for
each step:

u = −Kp(q − qd(t))−Kd(q̇ − q̇d(t)), (1)

where Kp,Kd are the gain matrices, and qd : R≥0 → R8 is
vector of desired motor angles. In order to switch from stance
to swing and vice versa, the desired trajectories are swapped
between the left and right legs at the end of every step. These
desired values are mapped from the polar coordinates, which
are in turn mapped from a parameterized function of time,
i.e., the Bézier polynomials. These polynomials are learned
via RL, which is explained next.

III. REINFORCEMENT LEARNING FRAMEWORK FOR
QUADRUPEDAL WALKING

In this section, we will study the deep reinforcement
learning (D-RL) framework used for realizing quadrupedal
walking in simulation. We will be mainly focusing on real-
izing trotting gaits in this paper, although this methodology
can be directly extended to other types of gaits like bound,
canter and walk.

A. Definitions

We formulate the problem of locomotion as a Markov
Decision Process (MDP). An MDP is represented by a tuple
{S,A,P, r, γ}. Here S ⊂ Rn is the set of robot states of
dimension n, and A ⊂ Rm is the set of feasible actions
of dimension m. P : S × A × S → [0, 1] is the transition
probability function that models the evolution of states based
on actions, and r : S × A → R is the reinforcement or the
reward obtained for the given state and action. γ is called
the discount factor defined in the range (0, 1).

The goal in RL is to achieve a policy that maximizes the
agent’s expected return, which is the cumulative sum of the
rewards. Since the state and action space is uncountably
infinite, a parametrized policy is used, denoted as πθ :
S × A → [0, 1], with the parameters θ. The optimal policy
yields the maximum return. The goal is to obtain the optimal
policy πθ∗ that yields the maximum return:

θ∗ = arg max
θ

M∑
k=0

E(sk,ak)∼pπθ (sk,ak)[R(sk, ak)], (2)

where pπθ is the marginalization of the state-action pair given
the set of all possible trajectories (s0, a0, s1, a1, ..., sM )
following policy πθ. The optimal parameters θ∗ are evaluated
iteratively by taking gradient ascent steps in the direction of
increasing cumulative reward.

B. State and Action Space

Compared to Stoch [4], the choice for the state and action
spaces are different. Fig. 3 has a detailed representation of
these spaces, and are described next.

Fig. 3: Reinforcement learning framework used to realize
walking in Stoch 2. This is a deviation from the standard
approach, which maps the actions directly to motor angles
(as shown by the dotted boxes). In this paper, we propose to
include the trajectory generator block before the actuation
block.

1) State Space: The state is represented by body center of
mass (base) position and orientation. Note that the previous
version of Stoch [4] consisted of angles, velocities, torques
of the active joints as a part of the statespace. We chose to
omit them for two reasons 1) The policy update is after every
walking step, 2) Calculating velocities and accelerations are
noisy on a physical system, which leads to instability. See
Fig. 3 for a pictorial representation of RL framework.

2) Action Space: We chose to learn the end-point trajec-
tory of the legs in polar coordinates, which are denoted by
wi : R≥0 → R, αi : R≥0 → R, where i ∈ {0, 1, 2, 3}. As
shown by Fig. 2, wi is distance of the end foot w.r.t. the
hip, and αi is the angle w.r.t. the vertical. Each value of i
corresponds to one leg of the robot i.e., front left, front right,
back left, and back right respectively. Earlier approaches of
determining the trajectories for wi, αi involved using the
policy network directly i.e., for each time step tk, the policy
network πθ determined the values for wi, αi. See Fig. 3,
which shows the inclusion of a new block, the trajectory
generator.

For each i, wi is determined via a Bézier polynomial:

wi(τ) = ΣNj=0a
w
ij(1− τ)(N−j)τ j + woff , (3)

where N is the order of the polynomial, woff is the offset,
and awij ∈ R, j ∈ {0, 1, 2, . . . , N} are the coefficients. The
polynomials for αi’s are also obtained accordingly, which
will be denoted by aαij’s and αoff . For Stoch 2, we chose
N to be 3, and also restricted the values for aij’s in the
set [−1, 1]. τ : R≥0 → [0, 1] is the phase variable that varies
from 0 to 1. As is standard practice [19], we will mark τ = 0
to be the beginning of the step, and τ = 1 to be the end of
the step. By setting a desired period T > 0 seconds, we
obtain the phase as a function of time: τ(t) = t

T . After the
completion of every step we reset t to zero.

Having defined the polynomial trajectories for each leg,



the corresponding coefficients are obtained from the policy
network, πθ. Therefore, aij’s form the action space of the
robot. Since there are four leg modules, the dimension of
aij’s is 32 (this dimension will be reduced further below).
Accordingly, the goal is to learn an optimal set of aij’s
that yield walking in Stoch 2. More details on the learning
algorithm are provided in Section III-D.

C. Hybrid Invariance Conditions

In order to ensure continuity of the trajectories, the desired
values for wi, αi of the current step at τ = 1 should match
with corresponding desired values of the next step at τ = 0.
Moreover, for a trotting gait, the trajectories of diagonally
opposite legs are identical, and are swapped between the left
and right legs after every step. Therefore, we require that the
following are satisfied:

Continuity : w0(0) = w1(1), w0(1) = w1(0)

Trot : w2(τ) = w1(τ), w3(τ) = w0(τ),∀τ, (4)

which yield us the constraints on awij’s. These constraints are
easy to ensure via Bézier polynomials. For example, w0(0) =
aw00 + woff , and w0(1) = aw03 + woff .

In order to realize smooth trajectories, we also ensure
continuity of the derivatives of wi, αi during switching.
Accordingly, we have constraints similar to (4) yielding the
following:

aw01 = 6aw13 − aw12, aw11 = 6aw03 − aw02,

aw21 = aw11, aw31 = aw01. (5)

A similar procedure is followed for obtaining aαij’s. This
implementation reduces the dimension of the action space to
8. It is worth noting that these hybrid invariance conditions
are a well known concept in the walking community [19],
wherein stable periodic orbits are realized in a low dimen-
sional manifold through these conditions. We have used a
simpler form of these conditions by ignoring the impacts.

The polar coordinates for the four legs collectively provide
an 8 dimensional space. For each wi, αi, we can obtain the
corresponding joint angles (both hip and knee of leg i) via
an inverse kinematics solver described in Section II-A.

D. Network and Learning Algorithm

Since the states and actions are continuous, we chose to
use policy gradient algorithms for determining the optimal
policy for the robot. Proximal Policy Optimization (PPO)
[20] have been very successful for obtaining optimal con-
tinuous action values [21]. It is an on-policy, model-free
algorithm based on actor-critic learning framework. We used
the open source implementation of PPO2 by Stable Baselines
[22]. The implementation is run on GPUs and performs
gradient ascent updates using Adam [23] optimizer. More
details on the learning algorithm are provided in [4].

E. Simulation Framework

We used MuJoCo simulator, for simulating the robot. A
three-dimensional computer-aided-design (CAD) model is
developed using SolidWorks to capture the kinematics and
inertial properties of the robot. This model is transferred
to the simulator by using a Universal Robot Description
Format (URDF) exporter. In addition, actual mass of all the
links, actuator force limits, joint limits and kinematic-loop
constraints of the flexural joints are measured and manually
updated in the URDF file for a more realistic simulation.

F. Reward Function

The agent receives a scalar reward after each action update
according to the reward function

r = Wvel ·∆x−WE ·∆E +WC · Cref − p. (6)

Here ∆x is the difference between the current and the
previous base position along the x-axis. Wvel, WE and WC

are weights corresponding to each of the terms in (6). ∆E
is the energy spent by the actuators for the current step. It
is computed as

∆E = ΣMk=0Σ8
i=1 max{0,ΓTi (tk)ωi(tk)}∆t, (7)

where M is the number of time samples in the time interval
[0, T ]. Γ is the vector of motor torques, and ω is the vector
of motor velocities. Cref is given as follows:

Cref = e−cΣ
1
i=0ΣMk=0[(xi(tk)−x∗

i (tk))2+(yi(tk)−y∗i (tk))2], (8)

where (xi, yi)’s form the cartesian positions of the feet w.r.t.
the hip obtained from the polar coordinates wi, αi:

xi(t) = wi(t) sin(αi(t))

yi(t) = −wi(t) cos(αi(t)), (9)

c > 0 is a constant, and x∗i , y
∗
i are reference trajectories in the

Cartesian space1. See green plots in Fig. 5. Specific values
for the weights used for the training are shown in Table II. p
is the penalty that penalizes with a high value whenever the
robot falls. The fall condition is determined when either the
base position is too low or the body orientation exceeds a
certain limit. The episode is terminated when the robot falls.

IV. RESULTS

We will start with the training and simulation results, and
then focus on the experimental results of Stoch 2 walking.

A. Training and Simulation Results

The actor and critic network in the learning algorithm
consists of two fully connected layers with the first and
second layers consisting of 64 nodes each. Activation units
in the actor and critic networks are ReLU → ReLU →
tanh, and ReLU → ReLU → linear respectively. Other
hyper-parameters are mentioned in Table. II. Six simulation

1These reference trajectories for xi, yi were, in fact, obtained from the
experimental results of a previous version, Stoch [4]. A similar procedure
was followed in [24], where a reference gait was used to determine optimal
policies faster.



Entity Value
p,WE ,Wvel,WC , c 0, 0.05, 1, 2, 2
Discount factor (γ) 0.99

Learning rate (actor, critic) 2.5× 10−4, 2.5× 10−4

Batch size 128× 6
Hidden layers (actor) [64, 64]

End-point position limit (θ) [−60◦, 60◦]
End-point position limit (r) [14cm, 25cm]

Step period (T ) 0.5s
Offsets woff , αoff 23cm, 0◦

TABLE II: Hyper-parameter values of the learning algorithm are
given here.

0 250000 500000 750000 1000000 1250000 1500000 1750000

Iterations

0

50

100

150

200

250

300

350

D
is

co
u

nt
ed

re
w

ar
d

Fig. 4: Figure showing the discounted reward vs. the number
of iterations. The reward saturates after approximately 1
million iterations.

environments are used in parallel for faster collection of
samples. In order to reduce the training time, we have added
offsets (denoted by a∗w, a∗α) to the coefficients obtained
from the policy network:

a∗w02 = 0.6478, a∗w03 = −2.7844,
a∗α02 = −5.7351, a∗α03 = −0.5798,
a∗w12 = −1.4153, a∗w13 = −0.6887,
a∗α12 = 4.1526, a∗α13 = 0.8775.

These offsets were manually obtained (which were, in fact,
learned in the first version of Stoch), and were fixed for all
the training instances. The training starts yielding positive
rewards in 20, 000 (8 minutes) iterations and saturates after
approximately 1 million iterations. Fig. 4 shows the plot
of the discounted reward vs. the number of iterations. The
observed training time was 7 hours after 1 million iterations
on a six core Intel CPU i7 @3.7Ghz processor with 32 GB
RAM, and a GeForce RTX 2080 Ti GPU.

The policy network yielded the following awij , a
α
ij’s after

training:

aw02 = 0.4471, aw03 = 1,
aα02 = 1, aα03 = −0.1395,

aw12 = −0.5189, aw13 = 0.0083,
aα12 = −1, aα13 = −0.0225,

and the remaining coefficients of the polynomial are obtained
by using the hybrid invariance conditions given by (4) and
(5). Fig. 5 shows the trajectories of the feet w.r.t. the hips in
cartesian space. There is a nonzero error between the actual
and the desired values due to the fact that the PD gains used
were small: Kp = 30,Kd = 0.3. This is to ensure that the

−0.100 −0.075 −0.050 −0.025 0.000 0.025 0.050

x position, front right leg

−0.22

−0.20

−0.18

−0.16

y
p

os
it

io
n

Polynomial

Simulation

Reference

−0.100 −0.075 −0.050 −0.025 0.000 0.025 0.050

x position, back right leg

−0.22

−0.20

−0.18

−0.16

y
p

os
it

io
n

Polynomial

Simulation

Reference

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

x position, front right leg

−0.20

−0.18

−0.16

y
p

os
it

io
n

Simulation

Experiment

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

x position, back right leg

−0.22

−0.20

−0.18

−0.16

y
p

os
it

io
n

Simulation

Experiment

Fig. 5: Figure showing the trajectory of the feet for two
complete steps of the robot in cartesian coordinates. There is
a large error between the simulated gait and the polynomial
(top two figures) values. This is due to the low PD gains
used for more realistic simulations. Purple is the reference
trajectory. The bottom two figures show the comparison
between the desired and actual gait in experiment.

simulation is realistic, although, it must be noted that the
learning framework is agnostic to the PD gains, and solely
focuses on realizing a walking gait with the maximum return.
Fig. 6 shows the walking simulation tiles for one step.

B. Experimental Results

We obtained the desired values for wi, αi from the Bézier
polynomials. By using an inverse kinematic solver, the
desired motor angles are obtained and tracked via a PD
control law. The resulting trajectories obtained in experiment
are shown in the lower two plots in Fig. 5. Fig. 6 shows
the resulting experimental tiles obtained for one step. The
following video link also shows the experimental results:
https://youtu.be/aFGM_xWeh3U

C. Limitations

Since our methodology is based on “step-to-step” learning,
i.e., learning the trajectory for the entire step, there is a loss
of robustness due to external disturbances within a step. In
other words, compared to the walking controllers shown in
[3], where the policy update is every time step, our method-
ology has no notion of recovery within the walking step. In
addition, we have not incorporated robustifying techniques
such as domain randomization, delay adjustment in our
learning framework. As a result, minor modifications were
required in the experimental implementation. For example,
the offset woff , for each leg, was varied by small amounts
(≈ 0.01m) to account for the differences in the kinematic
model (caused by mechanical wear and tear). It is also worth
noting that due to large tracking errors, the gap between
the simulation and experimental behaviors were larger. A
detailed analysis of this gap will be a main focus of our
future work.

https://youtu.be/aFGM_xWeh3U


Fig. 6: The walking tiles in simulation (top) and in experiment (bottom) are shown here.

V. CONCLUSION

In this paper, we demonstrated how trajectory based policy
search methods can be utilized to realize stable quadrupedal
walking. Motivated by the approach shown in [10], [11],
we search for parameterized functions of time, wherein the
coefficients of these functions are learned via D-RL. This
is a deviation from the approaches followed in [4], [18],
wherein the policy network was used to determine the motor
angle commands directly. Future work will involve bridging
the gap between simulation and experiments, and realization
of more complex behaviors like stair climbing, running and
bounding.

REFERENCES

[1] J. Peters, J. Kober, K. Mülling, O. Krämer, and G. Neumann, “Towards
robot skill learning: From simple skills to table tennis,” in Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer, 2013, pp. 627–631.

[2] H. J. Kim, M. I. Jordan, S. Sastry, and A. Y. Ng, “Autonomous
helicopter flight via reinforcement learning,” in Advances in neural
information processing systems, 2004, pp. 799–806.

[3] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner,
S. Bohez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion
for quadruped robots,” CoRR, vol. abs/1804.10332, 2018. [Online].
Available: http://arxiv.org/abs/1804.10332

[4] A. Singla, S. Bhattacharya, D. Dholakiya, S. Bhatnagar, A. Ghosal,
B. Amrutur, and S. Kolathaya, “Realizing learned quadruped locomo-
tion behaviors through kinematic motion primitives,” arXiv preprint
arXiv:1810.03842, 2018.

[5] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. van de Panne,
“Iterative reinforcement learning based design of dynamic locomotion
skills for cassie,” 2019.

[6] M. P. Deisenroth, G. Neumann, J. Peters et al., “A survey on policy
search for robotics,” Foundations and Trends R© in Robotics, vol. 2,
no. 1–2, pp. 1–142, 2013.

[7] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[8] J. Kober and J. R. Peters, “Policy search for motor primitives in
robotics,” in Advances in neural information processing systems, 2009,
pp. 849–856.

[9] D. Hafner, J. Davidson, and V. Vanhoucke, “Tensorflow agents:
Efficient batched reinforcement learning in tensorflow,” arXiv preprint
arXiv:1709.02878, 2017.

[10] R. Tedrake, T. W. Zhang, and H. S. Seung, “Stochastic policy
gradient reinforcement learning on a simple 3d biped,” in Intelligent
Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ
International Conference on, vol. 3. IEEE, pp. 2849–2854.

[11] N. Kohl and P. Stone, “Policy gradient reinforcement learning for
fast quadrupedal locomotion,” in Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International Conference on, vol. 3.
IEEE, pp. 2619–2624.

[12] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots: a review,” Neural networks, vol. 21, no. 4, pp.
642–653, 2008.

[13] A. D. Ames, “Human-inspired control of bipedal walking robots,”
IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1115–
1130, May 2014.

[14] S. N. Yadukumar, M. Pasupuleti, and A. D. Ames, From Formal
Methods to Algorithmic Implementation of Human Inspired Control
on Bipedal Robots. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 511–526.

[15] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames,
“3d dynamic walking with underactuated humanoid robots: A direct
collocation framework for optimizing hybrid zero dynamics,” in 2016
IEEE International Conference on Robotics and Automation (ICRA),
5 2016, pp. 1447–1454.

[16] W.-L. Ma, S. Kolathaya, E. R. Ambrose, C. M. Hubicki, and
A. D. Ames, “Bipedal robotic running with durus-2d: Bridging
the gap between theory and experiment,” in Proceedings of the
20th International Conference on Hybrid Systems: Computation and
Control, ser. HSCC ’17. New York, NY, USA: ACM, 2017, pp. 265–
274. [Online]. Available: http://doi.acm.org/10.1145/3049797.3049823

[17] A. A. Saputra, N. N. W. Tay, Y. Toda, J. Botzheim, and N. Kubota,
“Bzier curve model for efficient bio-inspired locomotion of low cost
four legged robot,” in 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Oct 2016, pp. 4443–4448.

[18] D. Dholakiya, S. Bhattacharya, A. Gunalan, A. Singla, S. Bhatnagar,
B. Amrutur, A. Ghosal, and S. Kolathaya, “Design, development
and experimental realization of a quadrupedal research platform:
Stoch,” CoRR, vol. abs/1901.00697, 2019. [Online]. Available:
http://arxiv.org/abs/1901.00697

[19] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE Transactions on Automatic
Control, vol. 48, no. 1, pp. 42–56, Jan 2003.

[20] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017. [Online]. Available: http://arxiv.org/abs/
1707.06347

[21] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup,
and D. Meger, “Deep reinforcement learning that matters,” in
Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018,
2018. [Online]. Available: https://www.aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/16669

[22] A. Hill, A. Raffin, M. Ernestus, A. Gleave, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman,
S. Sidor, and Y. Wu, “Stable baselines,” https://github.com/hill-a/
stable-baselines, 2018.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[24] Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de
Panne, “Feedback control for cassie with deep reinforcement
learning,” CoRR, vol. abs/1803.05580, 2018. [Online]. Available:
http://arxiv.org/abs/1803.05580

http://arxiv.org/abs/1804.10332
http://doi.acm.org/10.1145/3049797.3049823
http://arxiv.org/abs/1901.00697
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1803.05580

	Introduction
	Robot Description
	Kinematic Description
	Feedback Control

	Reinforcement Learning Framework for Quadrupedal Walking
	Definitions
	State and Action Space
	State Space
	Action Space

	Hybrid Invariance Conditions
	Network and Learning Algorithm
	Simulation Framework
	Reward Function

	Results
	Training and Simulation Results
	Experimental Results
	Limitations

	Conclusion
	References

