
Motion Planning With Dynamic Obstacles Using
Convexified Control Barrier Functions

Varun V. P.1, Abraham P. Vinod2, and Shishir Kolathaya3

Abstract— Model Predictive Control (MPC) is a popular
approach used for motion planning in dynamical systems.
Given a finite horizon cost, we seek an optimal control law
subject to safety constraints. However, in the presence of
obstacles, existing MPC formulations are often slow and may
lead to infeasibility. We propose a real-time implementable
MPC formulation using control barrier functions (CBF) and
successive convexification. We represent the non-convex obstacle
avoidance constraints using CBFs that ensure that a feasible
solution always exists. We then reformulate the non-convex
optimal control problem using successive convexification to
enable the use of computationally-efficient conic solvers. Our
approach enables controller synthesis at real-time, which is
difficult with existing approaches that rely on nonlinear solvers.
We demonstrate the method in simulation, where we navigate
a UAV to a target while avoiding dynamic obstacles in the
environment.

I. INTRODUCTION

Model-predictive control (MPC), originating from the pro-
cess industries [9], has now seen success in a variety of ap-
plications, including autonomous ground vehicles [12], robot
manipulators [16] and unmanned aerial vehicles (UAVs)
[10]. MPC enables trajectory planning for a desirable time
horizon, while satisfying safety-critical constraints. Practical
implementations of MPCs largely involve minimization of
quadratic cost formulations subject to linear constraints. As
a result, efficient optimization schemes leveraging advances
in quadratic programming have permitted the use of low
compute platforms like Raspberry Pi for real-time implemen-
tation [8]. However, these successes have not been extended
to safety-critical operations like obstacle avoidance, due to
the underlying non-convexity and nonlinear constraints.

MPC problem formulations with nonlinear constraints
have been studied extensively [2], [17]. These works re-
duce the nonlinear constraints to simpler forms typically
via linearizations and yield approximate solutions. How-
ever, these solutions may not be feasible for the original
problem. In the context of obstacle avoidance, successive
convexification has provided a fast alternative [15]. Here,
the authors provide an iterative algorithm that at each step
projects the current trajectory solution on to the obstacles,
convexifies the nonconvex obstacle avoidance constraints via

This project is supported by Wipro IISc Research and Innovation Network
(WIRIN) Initiative and the Robert Bosch Centre for Cyber Physical Systems.

1Varun V. P. is associated with the Robert Bosch Centre for Cyber-
Physical Systems, IISc, India

2A. P. Vinod is with Mitsubishi Electric Research Laboratories (MERL),
Cambridge, MA, 02139 USA. Email: aby.vinod@gmail.com

3S. Kolathaya is associated with the Robert Bosch Centre for Cyber-
Physical Systems and the department of Computer Science and Automation,
IISc, India

Fig. 1: Figure showing the typical UAV setup going to vari-
ous destination points. The goal is to plan collision-free tra-
jectories in real-time using model-predictive control (MPC).
We propose to use convexified control barrier functions
(CBFs) as MPC constraints to improve feasibility and ro-
bustness. The software-in-the-loop simulation using Gazebo
can be seen here https://youtu.be/NX4CBHGFbQA .

linearization about the projection points, and then solves the
resulting convex program. Convex programs can be solved
efficiently using off-the-shelf solvers like ECOS [7]. In the
context of unmanned aerial vehicles (UAVs, see Fig. 1), the
obstacle avoidance constraint can be reformulated to yield a
conic constraint in every iteration, which is then evaluated
successively to yield a fast locally optimal solution. This
makes it attractive for use on onboard compute platforms,
often constrained by power and memory requirements [14].

Despite the fast computation times, the method of suc-
cessive convexification in its current form has two practical
issues that prevent us from effectively using them in real-
time. First, the modeling errors in the robot and the error in
predicted obstacle motion can lead to unsafe behaviors and
infeasibility in future time steps. Second, the initial state of
the robot itself may be in violation with one of the constraints
in the MPC formulation, which may prevent the successive
convexification from producing a feasible trajectory. While
introducing a margin of error in the constraints can partially
address the first issue, the second issue is currently solved
by introducing control barrier functions (CBFs) [18]. CBF
admits violations in a limited sense, i.e., it ensures that
safety constraints are eventually not violated, even when
starting from initial conditions that violate safety. However,
a direct incorporation of CBF into an MPC formulation
is hard due to the underlying non-convexity. We utilize
successive convexification, specifically difference-of-convex
programming, to enforce CBF-based constraints in MPC.

Control barrier functions (CBFs) were introduced in mid

https://youtu.be/NX4CBHGFbQA


2010’s as a means to address safety-critical control problems
via optimization based control laws. For the problem of
obstacle avoidance, these functions are like artificial potential
fields [11], with the added property of 1) asymptotic conver-
gence to the safe region and 2) optimality of control laws.
Potential fields are usually associated with a flag which is
activated whenever the system is very close to the obstacle.
CBFs do not require such conditional activations, and the
constraints are well defined for states outside the safety
set. Furthermore, CBFs not only ensure forward invariance
of a specified safety set (super-level set generated by the
constraint), but also allow asymptotic convergence to this set.
This makes the CBFs more robust to constraint violations,
which, in realistic scenarios, occur very often. Traditionally,
CBFs have been used as a filter that eliminates the safety-
violating decisions given by the higher level planner (say
MPC) [1], [3]. This “short-sighted” approach, even though
guarantees safety, does not yield a goal-bound trajectory,
i.e., the filtered commands are in conflict with the main
objective of reaching a destination. Therefore, we propose
to reformulate the CBFs and use it in the higher level
MPC planner. In order to improve feasibilty and speed of
computation, we will approximate the nonconvex part to
yield a convex sub-problem. This can be iteratively evaluated
until convergence. This results in real-time generation of
locally optimal trajectories avoiding obstacles and reaching
the destination.

The main contribution of the paper is with the convexifi-
cation of the control barrier functions in MPC optimization
problems. We will first formulate the obstacle avoidance
constraints in a standard MPC formulation for constrained
motion planning using CBF-based constraints. The result-
ing constraints are nonlinear and non-convex. In particular,
these constraints have two terms, a convex and a concave
constraint. By the method of successive convexification for
difference-of-convex programming, we repeatedly solve a
convex optimization problem until convergence. At con-
vergence, we obtain a locally-optimal, dynamically-feasible
trajectory that satisfies the obstacle avoidance constraints.
We demonstrate the proposed solution in two UAV obstacle
avoidance problems.

The paper is structured as follows. We discuss the mathe-
matical preliminaries and the problem formulation in Section
II. We introduce our main approach in the paper, i.e.,
successive convexification of control barrier functions for
solving nonlinear MPC optimization problems, in Section III.
We finally discuss the results on a simulated UAV platform
in Section IV.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notation: For any vectors x, y, x ≤ y and x ≥ y
imply elementwise inequality. We denote the set of integers
between (and including) a, b ∈ N by N[a,b].

A. Control barrier functions

In this subsection, we will review control barrier functions
for discrete time systems, and also state their relationships

with forward invariance of a set (see [1] for a detailed ac-
count of discrete-time barrier functions). Consider a system
of the form:

xk+1 = f(xk, uk), (1)

where xk ∈ Rn, uk ∈ Rm, f : Rn × Rm → Rn is locally
Lipschitz. Given an initial condition x0 ∈ Rn, and a feedback
control law uk = v(xk), v : Rn → Rm for some control
objective (say tracking), there exists a maximum sequence
of k’s I(x0) = {0, 1, 2, . . . , T} such that xk is the unique
solution to (1) on I(x0); in the case when (1) is forward
complete, T =∞. A set S ⊂ Rn is forward invariant w.r.t.
(1) if for every x0 ∈ S , xk ∈ S for all k ∈ I(x0). If S is
forward invariant, then we call the set S safe.

Given a closed set C ⊂ Rn (which is a strict subset of Rn),
we determine conditions such that it is forward invariant. C
is defined as

C = {xk ∈ Rn : h(xk) ≥ 0}, (2)
∂C = {xk ∈ Rn : h(xk) = 0}, (3)

Int(C) = {xk ∈ Rn : h(xk) > 0}, (4)

where h : Rn → R is a continuous function. It is also
assumed that Int(C) is non-empty and C has no isolated
points, i.e., Int(C) 6= ∅, and Int(C) = C. We are interested
in a feedback control law that ensures forward invariance of
C. We call this controller a safeguarding controller w.r.t. the
set C. We can obtain a suitable safeguarding controller via
control barrier functions (CBFs).

Initially defined in [3, Section II.B], the goal was to not
only realize forward invariance of C, but also to realize
asymptotic convergence of C. In other words, if x0 ∈ D,
with D being a slightly larger set such that C ⊂ D ⊆ Rn,
we wish to have an inequality of the form:

h(xk+1) ≥ γh(xk), (5)

for some γ ∈ (0, 1). The above inequality ensures that
h(xk) ≥ 0 for all k, if h(x0) ≥ 0. In addition, If the system
(1) is forward complete, we have that h(x0) < 0 =⇒
limk→∞ h(xk) ≥ 0. If there exists a control law such that (5)
is satisfied, then we call this type of function a control barrier
function (BF). We have the following formal definition of a
CBF [1].

Definition 1. Given a set C ⊂ Rn defined by (2)-(4) for a
continuous function h : Rn → R, the function h is called a
control barrier function (CBF) defined on the open set D
with C ⊂ D ⊆ Rn, if there exists a set of controls U, and a
γ ∈ (0, 1) such that for all xk ∈ D,

sup
uk∈U

h(f(xk, uk)) ≥ γh(xk). (6)

It is important to note that the CBF defined above is
usually a nonlinear function of the states and inputs. CBFs
found a lot of success for continuous time systems, where
the derivative of the CBFs contained an affine structure [3].
Robotic systems largely fall under this category, wherein
safeguarding control laws can be directly formulated as



quadratic programs (QPs). This type of QP formulation uses
only the inputs as decision variables. Since our interests are
more towards realizing optimal control laws for the next N
steps, our optimization requires both the inputs and the states
for N steps as decision variables. This can be achieved via
model predictive control.

B. Problem formulation

We consider the motion planning problem with linear
dynamics for the UAVs,

xk+1 = Axk +Buk, (7)

with state x ∈ Rn, input u ∈ U ⊂ Rm for some convex
and compact set U denoting the actuation constraints, and
matrices A ∈ Rn×n and B ∈ Rn×m. We use N to denote
the prediction horizon used in planning, and we wish to drive
the UAV to a target state xf ∈ Rn while staying with a
convex and compact set X ⊂ Rn.

We also wish to avoid NO ∈ N dynamic obstacles (see
Fig. 2). However, we typically do not have access to the
future trajectory of these obstacles. In practice, we typically
rely on simple models like constant velocity [5] to predict
the obstacle motion. However, such simple models will
cause infeasibility in the optimal control formulations, due
to the deviation between the predicted and realized obstacle
trajectories.

The control barrier functions, discussed in Section II-A,
enables enforcement of the obstacle avoidance as a soft con-
straint, which mitigates the problem of infeasibility. Specifi-
cally, at each time step k, let {cik}Nk=0 and ri for i ∈ N[1,NO]

be the known predicted motion of the dynamic obstacle and
the desired clearance respectively. Consequently, we cast the
obstacle avoidance constraint,

‖xk − cik‖ ≥ ri (8)

for every k ∈ N[1,N ] and i ∈ N[1,NO] as follows,

hi(xk+1; cik, ri) ≥ γhi(xk; cik, ri) (9)

where hi : Rn → R for each i ∈ N[1,NO] is defined as
follows,

hi(x; ci, ri) = ‖x− ci‖2 − r2i . (10)

Note that (10) is positive provided x and c is more than r-
separated, which is aligned with safety definition for obstacle
avoidance (8).

We obtain the following receding horizon optimal control
problem with the current state x0 of the UAV,

minimize
x1,x2,...,xN

u0,u1,...uN−1

∑T

k=0
(xk − xf )TQ(xk − xf )

+ uTkRuk (11a)
subject to

∀k ∈ N[0,N−1] xk+1 = Axk +Buk, (11b)
∀k ∈ N[1,N ] uk ∈ U , xk ∈ X , (11c)
∀k∈N[0,N−1],
∀i∈N[1,NO ]

hi(xk+1; cik, ri) ≥ γhi(xk; cik, ri). (11d)

Fig. 2: x0 is the starting state, xf is the final state, (cik, ri)
is the predicted motion of the ith dynamic obstacle at time
k with the corresponding desired clearance ri

While hi is a convex function, (11d) is a non-convex
constraint. Consequently, we can not solve (11) in its current
form in real-time using convex optimization.

Problem 1. Design a real-time implementable algorithm
that computes a feasible solution to (11) using successive
convexification.

III. MOTION PLANNING USING SUCCESSIVE
CONVEXIFICATION OF CBFS

A naive approach to solve (11) is to linearize the con-
straint (11d) with respect to the decision variables about a
solution guess, and repeatedly solve the resulting quadratic
program. However, such an approach may not converge to a
feasible solution. Instead, we exploit the difference-of-convex
structure in (11d) to propose a successive convexification
technique inspired by [13] to solve (11).

Recall that a function g : Rn → R is a difference-of-
convex function if there exists two convex functions g1, g2 :
Rn → R such that g = g1 − g2. The class of difference-of-
convex functions is quite broad, since it includes all twice-
differentiable functions with bounded Hessians [13]. The
constraint g ≤ 0 is a difference-of-convex constraint, when
g is difference-of-convex.

Lemma 1. (11d) is a difference-of-convex constraint.

Proof. We can express (11d) for each i ∈ N[1,NO] and k ∈
N[0,N−1] as follows

γhi(xk; cik, ri)− hi(xk+1; cik, ri) ≤ 0. (12)

The convexity of γhi(xk; cik, ri) over xk ∈ Rn follows from
the convexity of hi over x by (10) and the fact that γ ≥ 0
[4, Sec 3.2.1]. Similarly, the convexity of hi(xk+1; cik, ri)
follows from the observation the convexity is preserved under
affine transformation [4, Sec 3.2.2].

While difference-of-convex constraints are still non-
convex constraints, one can convexify them without over-
approximating the feasible space [13]. Recall that the first-
order linear approximation of a convex function is a global
underapproximant of the function [4, Sec 3.1.3]. In other
words, for any x0 ∈ Rn, we have

f1(x)− f2(x) ≤ f1(x)− f2(x0)−∇f2(x0) · (x− x0).



Consequently, for any x0 ∈ Rn, we have

{x :f1(x)−(f2(x0)+∇f2(x0) · (x− x0)) ≤ 0}⊆{f≤0}.
(13)

Lemma 2. For any collection of states {zk}Nk=0 ∈ RNn and
the predicted obstacle information {(cik, ri)}Nk=0 for every
i ∈ N[1,NO], every feasible solution satisfying the following
collection of convex quadratic constraints for k ∈ N[0,N−1]
and i ∈ N[1,NO]

γ‖xk − cik‖2 ≤ ‖zk+1 − cik‖2
+2(zk+1 − cik)T (xk+1 − zk+1)
+r2i (γ − 1)

, (14)

also satisfy (11d).

Proof. We see that (14) inner-approximates the original
constraint (11d) by (13). We observe that (14) is a quadratic
function in the decision variables xk and xk+1.

Using Lemma 2, we obtain the following convexification
of the original problem (11),

minimize
x1,x2,...,xN

u0,u1,...uN−1

(11a)

subject to (11b), (11c), (14)
(15)

We note that (15) is a convex, quadratically-constrained
quadratic program, and can be efficiently solved using off-
the-shelf solvers like ECOS [7]. We next tackle the problem
of identifying the states about which we linearize the non-
convex constraint (11d) to obtain (14).

The feasible space associated with (14) can be empty since
(14) is an inner-approximation of the constraints (11d). To
avoid such a scenario, we need to carefully choose the states
{zk}Nk=0 about which we linearize (11d).

In [13, Alg. 1], the authors ensure that the feasible space
of the convexified subproblem of a general difference-of-
convex program is non-empty by assuming access to an
initial feasible solution guess. However, obtaining feasible
solutions is (11) is hard due to its non-convexity. Therefore,
we utilize the penalty-based approach proposed in [13, Alg.
2], which accommodates an infeasible start. Specifically,
we relax the constraints (14) via slack variables, which we
subsequently penalize in the objective.

We summarize the approach to solve (11) in Algorithm 1.
We first solve a convex quadratic program that ignores the
non-convex obstacle avoidance constraint (11d). Next, we
iteratively solve a relaxed version of (15) where the convex
quadratic constraints from Lemma 2 are relaxed by slack
variables, that are penalized in the objective. Recall that any
feasible solution to (17) with slack variables zero automat-
ically becomes feasible for (11) due to the difference-of-
convex structure (13). Therefore, we progressively increase
the penalty suffered by non-zero slack in the objective
across iterations, and terminate when the sum of the non-
negative slack variables becomes sufficiently low and the
cost converges across iterations, as prescribed in [13].

Algorithm 1: Successive convexification using
difference-of-convex CBF constraints

Data: UAV dynamics (A,B), UAV state and input
constraints X and U , UAV current state x0,
UAV target state xf , UAV quadratic costs
Q,R, obstacle predicted motion {(cik, ri)}Nk=0,
penalty scaling µ > 1, maximum scaling τmax,
thresholds for convergence δviol, δcost

Result: A feasible solution (possibly sub-optimal) to
(11)

1 Compute {zk}Nk=0 by solving the following quadratic
program (ignore obstacle avoidance constraints and
set z0 = x0):

{zk}Nk=1, {vk}
N−1
k=0

←


arg min

x1,x2,...,xN
u0,u1,...uN−1

∑T
k=0(xk − xf )TQ(xk − xf )

+uTkRuk
subject to

∀k ∈ N[0,N−1] xk+1 = Axk +Buk,
∀k ∈ N[1,N ] uk ∈ U , xk ∈ X ,

(16)2

3 sum slacks←∞, ∆cost←∞, costp ←∞
4 while sum slacks ≤ δviol and ∆cost ≤ δcost do
5 Compute {xk}Nk=0, {uk}Nk=0, and current cost

estimate cost by solving the following QCQP:

minimize
x1,x2,...,xN

u0,u1,...uN−1

∑T
k=0(xk − xf )TQ(xk − xf )

+uTkRuk + τ
∑

ik sik
subject to

∀k ∈ N[0,N−1] xk+1 = Axk +Buk,
∀k ∈ N[1,N ] uk ∈ U , xk ∈ X ,

∀k ∈ N[0,N−1],
∀i ∈ N[1,NO]

,
γ‖xk − cik‖2 − ‖zk+1 − cik‖2
−2(zk+1 − cik)T (xk+1 − zk+1)
−r2i (γ − 1) ≤ sik, sik ≥ 0

(17)6

7 τ ← min(µτ, τmax)
8 ∆cost← cost− costp, zk ← xk
9 sum slacks←

∑
i∈N[1,NO ],k∈N[0,N−1]

sik ≤ 0

10 end

IV. RESULTS

The proposed algorithm is tested on UAVs in the Gazebo
physics simulator, implemented using the ROS (Robotic
Operating System) framework. The UAVs use the PX4
SITL (Software In The Loop) autopilot. Here the control
outputs are implemented realistically as it would on a real
UAV, by passing through the low level controller of the
SITL autopilot. The algorithm is coded using the CVXPY
modeling language [6], which allows us to implement the
objectives and constraints close to its natural form. The
simulation computer runs Ubuntu 18 on an Intel i5 7300HQ
CPU with 16 GB of RAM, and an NVIDIA GTX1050 GPU.

In the implementation of the algorithm, four UAVs are



used. Each UAV executes an instance of the MPC obstacle
avoidance code. Each UAV treats the other UAVs as mov-
ing obstacles. It is assumed that the obstacle location and
velocity is known for each UAV in real-time. The velocity
information is used to extrapolate the obstacle trajectory for
the entire horizon (shown by red straight lines in Fig. 3a
and 4). An imaginary radius of the obstacle is also set.
A background program collects the position and velocity
of each UAV and publishes all of them on a single topic,
which is subscribed to by all the UAVs. It also renders
markers (shown as coloured squares) which can be dragged
to set the target position for each UAV in Rviz, a graphics
interface. Each UAV, having received the target position and
the obstacle states, plans its path accordingly.

We will first demonstrate the controller with a single
obstacle, and then extend it for three more obstacles. In
both cases, the following simulation parameters are used. The
prediction horizon N = 15, and each step is 0.1 s long. The
velocity limits for all UAVs are set to 1 m/s. Higher speeds
are possible, but the simulating computer was constrained in
terms of CPU and memory by simulating four UAVs. Each
obstacle is depicted by a circle of radius ri = 1.5 m, which
is the desired clearance between all the UAVs. The robot
and the obstacles use linear discrete point mass dynamics.
We set the other parameters µ = 4, τmax = 105, δcost =
0.1, δviol = 0.001 based on the discussion in [13]. We chose
the values of µ, τmax, and δcost to obtain a fast convergence
to a local optimum for real-time implementation, and the
values of δviol to ensure reasonable constraint satisfaction of
the resulting trajectory.

A. Single obstacle avoidance (NO = 1)

Here, the UAV has to cross the obstacle at (0, 4) to reach
the destination at (0, 9). Fig. 3a shows the setup. The rise in
number of iterations and solve time in Fig. 3b correspond to
the moments where the UAV is making its way around the
obstacle. The iterations and solve times reduce significantly
after the UAV clears the obstacle.

Fig. 3c shows the variation in h as the UAV goes towards
the target. We can see that h is mostly positive. This is
acceptable as the CBF constraint is soft, eventually allowing
for recovery in the subsequent timesteps. Hence the CBF
prevents the solver from failing due to the momentary
constraint violation. This is important, considering that the
simplified models used for both the UAV and the obstacle do
not account for inertial effects, and there might be real world
instances where the UAV might find itself inside another
obstacle briefly.

B. Multiple obstacle avoidance (NO = 3)

For the multiple obstacle simulations, we have four UAVs,
each running Algorithm 1. For the sake of brevity, we analyze
the iteration and solve times of a single UAV that has to
make its way through the three obstacles. From Fig. 4, we
can see that the UAV is successfully able to navigate around
the obstacles dynamically. While the solver time increases to
600 ms in the worst case scenario (Fig. 5), when dealing with
multiple obstacles at once, it drops to around 100 ms after
avoiding. This can be compensated by increasing the control
horizon, so that there exist some feasible control inputs that
the UAV can execute when dealing with longer solve times.

V. CONCLUSION

In this work, we demonstrate how dynamically moving
obstacles can be avoided in real-time by using control barrier
functions (CBFs). In particular, since the CBF constraint for-
mulations are non-convex in nature, the method of successive
convexifications accelerates the process of obtaining safe
trajectories in real-time. We demonstrate our approach on
UAVs in a Gazebo simulation framework. We show that the
UAVs are able to effectively navigate around the obstacles,
with a maximum solve time of 600 ms. Given that the
computer is rendering, simulating and executing all four
control algorithms satisfactorily in real-time, the individual
MPC avoidance control algorithm shows promise to run on
mobile compute platforms within a reasonable solve time,
which will be the subject of a future work.

(a)
(b) (c)

Fig. 3: Figures showing obstacle avoidance for a single obstacle. (a) shows the UAV (white shaded circle) at t = 5 s avoiding
the obstacle (gray shaded circle). (b) shows the number of successive convexification iterations and the associated solve
time. The time peaks to around 350 ms when the UAV gets very close to the obstacle. (c) shows the CBF varying as a
function of time. It can be verified that the CBF has very few violations all throughout the trajectory.



(a) t = 0 s (b) t = 4 s (c) t = 9 s (d) t = 13 s

Fig. 4: Figures showing the position of the UAVs and the obstacles over the entire duration. The UAV included in the white
shaded area is the UAV of interest, and the remaining three UAVs in the grey shaded area are the obstacles. The red straight
lines show the predicted motion of the obstacle in N steps, while the green lines show the predicted MPC trajectory. Both
the red and the green lines are better shown in the video https://youtu.be/NX4CBHGFbQA.

(a) (b) (c)

Fig. 5: Figures showing the obstacle avoidance data for the four-UAV problem. (a) shows the variation of CBF h for each
obstacle over time, (b) shows the number of successive convexification iterations and the associated solve time for one UAV,
and (c) shows the compute time for all the four UAVs. (Solve time in (b) corresponds to ’UAV 1’ in (c).)

REFERENCES

[1] Ayush Agrawal and Koushil Sreenath. Discrete control barrier func-
tions for safety-critical control of discrete systems with application to
bipedal robot navigation. In Proc. RSS, 2017.

[2] Frank Allgöwer and Alex Zheng. Nonlinear model predictive control,
volume 26. Birkhäuser, 2012.

[3] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier
function based quadratic programs for safety critical systems. IEEE
Transactions on Automatic Control, 62(8):3861–3876, 8 2017.

[4] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge Univ. Press, 2004.

[5] A. Chakravarthy and D. Ghose. Obstacle avoidance in a dynamic en-
vironment: a collision cone approach. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, 28(5):562–574,
1998.

[6] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of Machine
Learning Research, 2016. To appear.

[7] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for
embedded systems. In ECC, pages 3071–3076, 2013.

[8] Jan Drgona, Karol Kis, Aaron Tuor, Draguna Vrabie, and Martin
Klauco. Differentiable predictive control: An mpc alternative for
unknown nonlinear systems using constrained deep learning, 2020.

[9] Carlos E. Garcı́a, David M. Prett, and Manfred Morari. Model predic-
tive control: Theory and practice—a survey. Automatica, 25(3):335–
348, 1989.

[10] Mina Kamel, Thomas Stastny, Kostas Alexis, and Roland Siegwart.
Model predictive control for trajectory tracking of unmanned aerial

vehicles using robot operating system. In Robot operating system
(ROS), pages 3–39. Springer, 2017.

[11] Oussama Khatib. The Potential Field Approach And Operational Space
Formulation In Robot Control, pages 367–377. Springer US, Boston,
MA, 1986.

[12] Heonyoung Lim, Yeonsik Kang, Jongwon Kim, and Changwhan Kim.
Formation control of leader following unmanned ground vehicles using
nonlinear model predictive control. In 2009 IEEE/ASME ICAIM, pages
945–950, 2009.

[13] Thomas Lipp and Stephen Boyd. Variations and extension of the
convex–concave procedure. Optimization and Engineering, 17(2):263–
287, 2016.

[14] Yuanqi Mao, Daniel Dueri, Michael Szmuk, and Behçet Açıkmeşe.
Convexification and Real-Time Optimization for MPC with Aerospace
Applications, pages 335–358. Springer International Publishing,
Cham, 2019.

[15] Yuanqi Mao, Michael Szmuk, and Behçet Açıkmeşe. Successive
convexification of non-convex optimal control problems and its con-
vergence properties. In 2016 IEEE 55th Conference on Decision and
Control (CDC), pages 3636–3641, 2016.

[16] Ph. Poignet and M. Gautier. Nonlinear model predictive control of a
robot manipulator. In 6th International Workshop on Advanced Motion
Control. Proceedings (Cat. No.00TH8494), pages 401–406, 2000.

[17] Nathan Slegers, Jason Kyle, and Mark Costello. Nonlinear model
predictive control technique for unmanned air vehicles. Journal of
guidance, control, and dynamics, 29(5):1179–1188, 2006.

[18] Jun Zeng, Bike Zhang, and Koushil Sreenath. Safety-critical model
predictive control with discrete-time control barrier function. In
American Control Conference (ACC), New Orleans, LA, May 2021.

https://youtu.be/NX4CBHGFbQA

	Introduction
	Preliminaries and problem formulation
	Control barrier functions
	Problem formulation

	Motion planning using successive convexification of CBFs
	Results
	Single obstacle avoidance (NO=1)
	Multiple obstacle avoidance (NO=3)

	Conclusion
	References

