
Inverse Kinematics Analysis of Cassie Robot using
Radial Basis Function Networks

Mukund Mitra∗
Centre for

Product Design and Manufacturing
Indian Institute of Science

Bangalore, India
mukundmitra@iisc.ac.in

Suman Raj∗
Department of

Computational and Data Sciences
Indian Institute of Science

Bangalore, India
sumanraj@iisc.ac.in

Shishir Kolathaya
Department of

Computer Science and Automation
Indian Institute of Science

Bangalore, India
shishirk@iisc.ac.in

Abstract—Inverse Kinematics of bipedal humanoid robots
remains a challenging problem in the domain of robotics and
computation, due to high order non-linearity and computation
involved in Inverse Kinematics solutions. Also, there are many
constraints involved with the various joint parameters which
makes their analysis even more complex.

Through this paper, we attempt to solve the Inverse Kine-
matics problem of a bipedal humanoid robot, Cassie, using
Radial Basis Function (RBF) Networks. Our method can also be
applied to other higher degrees of freedom serial manipulators.
Our simulation analyses the results based on size of datasets,
data distribution and network parameters. We have considered
datasets of size ∼300k and ∼1 million, single and multiple
hidden layers, equal and random data distribution, different
number of neurons in layers and different training functions.
We achieve our target of limiting the Mean Squared Error
(MSE) calculated using the trained model below 0.1◦ for each
joint angle, which is under acceptable limits for practical
implementation.

The configurations obtained from the RBF network are
simulated and compared with the original input configuration.
This is compared visually in MATLAB and the resulting pose
of end-effector are similar for both the cases, complementing
the performance that we get for the networks.

Index Terms—Cassie, Forward kinematics, Inverse kinemat-
ics, RBF Networks, Bipedal Robots

I. INTRODUCTION

Robot manipulators have been the most crucial unit of
automation industry and with research progressing towards
The Fourth Industry Revolution i.e. Industry 4.0, the main
focus has been to innovate entities, such as bipedal robots
that can help cope up with advancements in modern smart
technology. Bipedal robots are highly dynamic and have
degree of freedom as high as 20 in the case of Cassie. Having
a deep understanding of the kinematics and dynamics of these
robots becomes critical as they interact with systems that
have a direct impact on human beings. In order to evaluate
the robot’s sensitivity in the workspace, it becomes necessary
to precisely evaluate its mobility in the long run.

Inverse kinematics for a bipedal robot is very essential to
find all the corresponding joint angles for a particular pose
(position and orientation) of the end-effector i.e. toe of the

*Both the authors have contributed equally.

bipedal robot. This becomes crucial in precise control of the
trajectory of the end-effector in multiple applications like
pick and place of objects in warehouse, surgical operations,
battlefield search and rescue, etc. Since, we need to add a lot
of actuators to provide flexibility to the robot’s movement so
that it can achieve the same degree of freedom as a human,
this makes it more complex to understand their configuration.
In this paper, we consider a reduced order model [1] of Cassie
which means that the entire upper body mass is concentrated
at pelvis. Also, the right and left leg of Cassie are symmetric
and independent of each other. Thus, kinematic analysis of
one leg of Cassie is equivalent to a 7 DoF spatial serial
robotic arm.

Solving inverse kinematics for higher DoF manipulators
involves high order non-linearity and computation, along
with constraints. Various methods such as algebraic meth-
ods, geometric methods, numerical iterative methods can be
adopted to solve this problem. However, they are computa-
tionally intensive, time consuming and cannot cope up with
changes in robot structure and dynamic environments. The
Inverse Kinematic problem of a simple 6R planar manipu-
lator consists of solving a 16 degree polynomial [2] which
is highly non-linear. Additionally, there are many singular
configurations of the end-effector inside the workspace where
the solution is undefined. Hence, these singularities and non-
linearity makes the analytical methods difficult to solve. In
order to address this, recent research has explored methods
such as using Artificial Neural Networks (ANN) and optimal
algorithms. Although the method using ANN to solve the IK
problem also belongs to the iterative method, it differs from
the traditional iterative method and depends on the network
structure [3].

Using learning techniques guarantees high performance,
precise control and less computing time as compared to the
analytical method. Moreover, the solution obtained can also
be optimized by changing various network parameters. Also,
in case of multiple solutions, we can easily find the best
possible solution. Adding to this, we can incorporate as many
number of constraints as required in the problem. Thus, we
have used Artificial Neural Networks to solve our Inverse

Fig. 1. Bipedal Robot - Cassie, from [5]

Kinematics problem of Cassie.
In this paper, our primary goal is to solve the IK problem

for a suspended Cassie [4] using Radial Basis Function
Networks and achieve a maximum error of 0.1◦ for joint
angles. The rest of the paper is organized as follows: Section
II discusses the related work, Section III details out the
methodology that we adopt to solve forward and inverse
kinematics of Cassie, Section IV explains the simulation
setup and results and Section V concludes the paper and
also discusses prospective future works.

II. RELATED WORK

Solving for an inverse kinematics problem of a bipedal
robot is very important as it determines the amount of
torque required to reach a particular position in task space.
[6] and [7] have discussed the kinematic analysis of a 3
Degree of Freedom serial (DoF) robotic arm using algebraic
methods. [8] proposes a novel design for a 6-DoF robotic
arm and solves IK problem using coupled 3-DoF solutions
using analytical method. In [9] IK solution is given for a
mobile manipulator with strict non-holonomic constraints.
In [10], analytical solution of IK problem of a redundant
7-DoF manipulator with link offsets is given. We see that
analytical method for IK is highly non-linear and as the
DoF increases, difficulty in obtaining a closed form solution
increases. Therefore, we use learning techniques to analyse
the IK problem of a higher DoF manipulator.

When it comes to bipedal robots, [11] examines the
computational complexity and performance of different algo-
rithms for solving IK for 30 DoF humanoid robot. The com-
putationally most efficient method [12] can cause extraneous
motion in null space which is rectified by another algorithm
that incurs 3-fold increase in computational complexity. [13]
studies the IK solutions for a general 6R manipulator using
Matrix Polynomials where 75-80% of the time is spent in QR
algorithms for computing eigen decomposition. The running
time can be even further improved using better algorithms
and implementations.

Our work, that overcomes the limitations posed by [11]
and [13], is greatly inspired by [3] which constructs six

Fig. 2. Kinematic model of Cassie showing the robot’s generalized coordi-
nates in the body frame, where left and right leg are similar, from [19].

RBF networks for 6R manipulator. However, they do not
specify the effect of change in network parameters on error
in joint angles. [14] uses single RBF network and Genetic
Algorithm for a 7-DoF manipulator, which results in an error
in the range [0.93◦ 2.97◦]. On the same lines, [15] achieves
the best MSE as 11.52◦ with 1000 epochs. [16] uses six
neural network for a 6-DoF redundant manipulator achieving
a minimum error of 0.00706 radians i.e. 0.435◦ while [17]
uses parallel Elman networks to achieve a minimum error
of 1.49 radians with 1279 epochs. Studies have also been
done on feeding back the current robot configuration in the
design on ANN [18] in order to reduce the error, however
adds to the complex computations. Our work aims to achieve
a maximum error of 0.1◦ with an upper cap of 500 epochs
and a simplified ANN design.

III. BIPEDAL ROBOT KINEMATICS

A visual image of Cassie is shown in Fig. 1. It is a highly
dynamic bipedal robot with 20 degrees-of-freedom which is
given by equation (4).

q pose = [qx, qy, qz, qyaw, qpitch, qroll] (1)

q left leg = [q1L, q2L, q3L, q4L, q5L, q6L, q7L] (2)

q right leg = [q1R, q2R, q3R, q4R, q5R, q6R, q7R] (3)

q = [q pose, q left leg, q right leg]T (4)

where, (qx, qy, qz) and (qroll, qpitch, qyaw) are the Cartesian
coordinates of the pelvis and the Euler Angles in Z-Y-
X order, and (q1...q1L), (q1...q1R) are the generalized
coordinates of the left and the right leg, respectively using
which the kinematic modelling of Cassie is done. Figure 2
shows generalized coordinates of Cassie’s pelvis, left and
right leg in body frame, where left and right legs are similar.

TABLE I
TYPES OF LINKS AND JOINTS IN CASSIE

Link Number Link Name Joint Name Joint Type Parent Name
1 left pelvis abduction fixed left fixed pelvis
2 left pelvis rotation hip abduction left revolute left pelvis abduction
3 left hip hip rotation left revolute left pelvis rotation
4 left thigh hip flexion left revolute left hip
5 left knee knee joint left revolute left thigh
6 left shin knee to shin left revolute left knee
7 left tarsus ankle joint left revolute left shin
8 left toe toe joint left revolute left tarsus
9 vectorNav fixed pelvis to vectorNav fixed pelvis
10 right pelvis abduction fixed right fixed pelvis
11 right pelvis rotation hip abduction right revolute right pelvis abduction
12 right hip hip rotation right revolute right pelvis rotation
13 right thigh hip flexion right revolute right hip
14 right knee knee joint right revolute right thigh
15 right shin knee to shin right revolute right knee
16 right tarsus ankle joint right revolute right shin
17 right toe toe joint right revolute right tarsus

A. Kinematic Modelling of Cassie

Considering only one leg of the robot, the generalized
coordinates of Cassie given by equation (2) and equation
(3) can be written in matrix form as given by equation (5).

q1
q2
q3
q4
q5
q6
q7

=

hip− roll
hip− yaw
hip− pitch
knee− pitch
shin− pitch
tarsus− pitch
toe− pitch

(5)

Each leg of Cassie has seven DOF with five of them
being actuated q1, q2, q3, q4, q7 and the corresponding motor
torques are u1, u2, u3, u4, u5. The other two DOFs, q5, q6
are passive, corresponding to stiff springs.

Types of Links and Joints in Cassie: Each leg of Cassie
has 8 joints, with one fixed and others revolute. The names
of different links along with corresponding joint names, joint
types and parent joint names are tabulated in Table I.

B. Forward Kinematics Methodology for Cassie

Using D-H conventions defined in [20], rotation matrix of
each link with respect to the previous link is calculated and
denoted by i−1

i [R]. Also, position vector of origin of each
link with respect to the previous link i−1

i [O] is calculated.
Finally, the transformation matrix i−1

i [T] of each link with
respect to the previous link is calculated as given by equation
(6).

i−1
i [T] =

(i−1
i [R] i−1

i [O]
1

)
(6)

Similarly, we obtain all the transformation matrices, i.e. 0
1[T],

1
2[T],

2
3[T],

3
4[T],

4
5[T],

5
6[T],

6
7[T],

7
8[T]. Finally, the

transformation matrix of the end-effector with respect to the
inertial frame is obtained, which is given by 0

8[T].
In this paper, we focus on analysis of the left leg for which

the end-effector is left-toe. The Euler angles ψ, θ, φ from

0
8[T] is obtained to get the roll, pitch and yaw angles of the
end-effector with respect to the inertial frame. This gives us
the orientation matrix [ψ, θ, φ]. Next, length vector of left
toe given by 8

8
~P =

[
Px Py Pz

]T
is multiplied with the

transformation matrix 0
8[T] as given in equation (7) to get

the position matrix of the end-effector with respect to the
inertial frame.

0
8
~P =0

8 [T]88 ~P (7)

The position and orientation matrix obtained above are con-
catenated to get the final Pose Matrix as given by equation (8)
which contains position and orientation of the end-effector
for a given configuration of joint angles.

~Pose =
[
Px Py Pz ψ θ φ

]T
(8)

All of the above mentioned process are done for every
configuration.

C. Inverse Kinematics (IK) Methodology for Cassie

We perform IK using seven neural networks, where each
network is trained for a specific joint. The data obtained from
FK is separated into train and test data. Using train data, we
train the network where the network input is pose of the
end-effector and expected output is the corresponding joint
angle. We thus calculate the Mean Square Error for each joint
angles. Once the training is completed, the model is tested
using the test data. For IK analysis of Cassie, we have chosen
RBF network which have been explained as follows:

Radial Basis Function (RBF) Networks: The RBF network
has certain advantages such as local approximation, higher
convergence and ability to process non-linear mapping and
has been used to solve the IK problem of the MOTOMAN
manipulator [3].

In RBF network [21], the hidden layer, consists of a basis
function, like Gaussian function as shown in equation (9) and
output layer consists of a linear function. The basis function
depends on the distance from center vector (centroid) and is

Fig. 3. Cassie model imported in MATLAB

TABLE II
GPU SPECIFICATIONS

Parameters Values
MaxThreadsPerBlock 1024

MaxGridSize [2.1475e+09 65535 65535]
MaxThreadBlockSize [1024 1024 64]

SIMDWidth 32
MultiProcessorCount 5

ClockRateKHz 112400

radially symmetric about that vector. Due to local approxi-
mation, we get the strongest output when the input signals
are near the centroid of the basis function.

Ri (x) = exp

[
−‖x− ci‖2

2σ2
i

]
; i = 1, 2...m (9)

where x is a vector of dimension n; ci is the center of the ith

basis function of dimension n; σi is the standard deviation
of ith variable; ||x-ci|| is the norm of the vector x - ci; m
is the number of neurons; Ri(x) gets the maximum at ci,
and with the increase of ||x-ci||, Ri(x) decreases rapidly to
zero. Given the input xεRn n, only a small section of inputs
near x are activated. The nonlinear mapping x → Ri(x)
is implemented in input layer whereas the linear mapping
Ri(x) → yk is implemented in output layer as given by
equation (10),

yk =

m∑
i=1

ωikRi(x); k = 1, 2...p (10)

where p is the number of output neurons.

IV. SIMULATION

A. Setup

The simulation environment has been setup in MATLAB
R2020b and uses the Robotics Toolbox, Parallel Computing
Toolbox and Deep Learning Toolbox. The simulation ran on
a PC with Intel(R) Core(TM) i5-7200U 2.50GHz CPU and
8GB RAM. The GPU used for training and inferencing the
RBF network is Nvidia GeForce GTX 950M with specifica-
tions detailed in Table II.

The URDF model of Cassie [22] is imported in the
MATLAB environment and the pose of end-effector (toe)

Fig. 4. Neural network setup in MATLAB

TABLE III
RBF NETWORK PARAMETERS AND TRAINING CONFIGURATION

Networks No. of
layers

Neurons in
hidden layer 1

Neurons in
hidden layer 2

Type 1 1 10 0
Type 2 1 30 0
Type 3 2 10 10
Type 4 2 30 10
Type 5 2 30 30

is calculated using forward kinematics. According to our
requirements, each joint angle is determined as given in
equation (11) and equation (12).

− 5◦ ≤ q1, q7 ≤ 10◦, 8◦ ≤ q2 ≤ 15◦; (11)

10◦ ≤ q3, q4 ≤ 20◦,−5◦ ≤ q5, q6 ≤ 20◦ (12)

B. Dataset Generation

For our experiments, we have generated 2 datasets of size
279,936 (6ˆ7) and 823,543 (7ˆ7), the latter being close to 1
million. We have adopted two techniques for generating the
joint angle values, equal interval data (linspace) and random
interval data (randi). Given the number of points n from the
given range R = [q1, q2], the former returns a row vector of
n evenly spaced data points from R whereas the latter picks
up n random data points from R.

C. Training using RBF

In order to perform inverse kinematics, we train 7 in-
dependent RBF networks for each of the joint angles. The
training is done on GPU, specified in Table II with training
function Scaled Conjugate Gradient (SCG) and the results
are compared with training on CPU using training function
Bayesian Regularisation (BR). We use the Neural Network
Training Tool (nntraintool) provided by MATLAB that opens
the neural network training GUI.

Figure 4 shows that the RBF network consists of one input
layer, hidden layer and output layer each. The input layer
consists of 6 neurons which takes values from the pose of the
end-effector, 20 neurons in the hidden layer with activation
function as Gaussian function, and the output layer has one
neuron with linear activation. There are 7 such networks for
each joint of Cassie with network configurations as specified
in Table III.

The training stops when either of the following conditions
is met.

TABLE IV
MEAN SQUARED ERROR VARIATION WITH DATASETS FOR DIFFERENT RBF NETWORKS

Dataset Training Function Configuration q1 (◦) q2 (◦) q3 (◦) q4 (◦) q5 (◦) q6 (◦) q7 (◦)
Type 1 0.0128 0.0128 0.1718 0.1718 0.211 0.194 0.024
Type 2 0.0129 0.0124 0.166 0.166 0.2119 0.183 7.33e-03

SCG Type 3 0.0129 0.0125 0.1718 0.166 0.2 0.166 0.024
Type 4 0.0129 0.0123 0.1718 0.173 0.194 0.1604 0.0222

8R Type 5 0.013 0.0125 0.167 0.166 0.200 0.1615 0.021
Type 1 4.41e-08 9.24e-08 0.068 0.0132 0.131 0.063 0.0186

BR Type 2 1.86e-08 2.48e-08 0.063 0.0119 0.126 0.057 0.017
Type 3 2.189e-07 1.12e-07 0.063 0.011 0.12 0.052 0.015
Type 1 4e-05 5.38e-05 0.223 0.103 0.418 0.1718 0.0475
Type 2 1.27 e-05 3.35 e-05 0.223 0.097 0.4125 0.166 0.047

SCG Type 3 2.69e-05 6.26e-05 0.229 0.097 0.418 0.166 0.043
Type 4 1.62e-05 4.69e-05 0.223 0.0922 0.418 0.16 0.0428

8E Type 5 1.24e-05 3.9e-05 0.223 0.0916 0.406 0.16 0.043
Type 1 2.81e-07 6.03e-08 0.223 0.0916 0.395 0.16 0.042

BR Type 2 3.87e-08 2.81e-08 0.2177 0.085 0.383 0.16 0.042
Type 3 3.48e-08 7.74e-08 0.2177 0.085 0.383 0.16 0.041

SCG Type 2 4.2e-06 1.04e-05 0.0426 0.05 0.223 0.052 0.012
3R BR Type 2 4e-08 3.08e-08 0.027 0.033 0.16 0.037 8.95e-03

Fig. 5. Training Time per iteration for ∼1 million dataset for the networks
discussed in Table III on GPU

• Maximum number of iterations is achieved.
• Minimum gradient is reached.
• Validation check is done.

We have set the maximum number of iterations to 500 to
avoid over-training of data.

D. Results and Analysis

Table IV summarizes the performance (mean squared
error) achieved by the networks for seven joint angles. We
have generated three datasets for our analysis, 3R refers to the
dataset of size 279,936 configurations with random interval
distribution, 8E and 8R refers to the dataset of size 823,543
configurations with equal and random interval distribution
respectively.

1) Performance variation with dataset size: The results
obtained by taking 279,936 configuration values (3R type 2)
is more promising when compared to 823,543 configuration
values (8R type 2) for all the seven networks i.e. joint angles.
This could be derived from the fact that huge datasets that do
not have many features can add to the noise. The network
ends up memorizing the data and causes overfitting which
results in an increase in the error.

2) Performance variation with data distribution: Taking
random and even data distribution do not show any trend in
error for a specific training function. In case of SCG, for
some joint angles, taking randomly distributed dataset gives
more accurate result as can be seen in the case of q3, q5 and
q7 whereas for joint angles q1, q2, q4 and q6, taking evenly
distributed dataset gives accurate results.

3) Performance variation with network parameters: In
case of 8R, increasing the number of neurons in hidden layers
does not show significant error reduction, rather increases
computational time as can be visualised in Fig. 5. In contrast,
error decreases by a small amount on increasing the number
of neurons in each layer from 10 to 30 for 8E. Increasing
number of layers from Type 1 to Type 3 and Type 2 to Type
5 gives same error for each joint angles for 8R whereas a
slight decrease in error for 8E.

4) Performance variation with training function: Consid-
ering datasets with random data distribution i.e. 8R and 3R,
BR performs better than SCG. BR is a robust algorithm
that converts nonlinear regression into a statistical problem
and reduces the need for lengthy cross-validations. On the
contrary, SCG is based on conjugate directions, but this
algorithm does not perform a line search at each iteration
unlike other conjugate gradient algorithms which require
a line search at each iteration which making the system
computationally expensive. A comparative study of these
algorithms has been done in [23].

The configurations achieved using the predicted joint
angles from RBF networks is visually compared with the
configurations achieved using the dataset joint angles in Fig.
6, where left and right half shows the predicted and actual
configuration respectively. The configurations look similar
in both the cases, which complements our results in Table
IV. The trained RBF networks suffices our requirement for
the position of end-effector in the range [0.30387 0.778]m,
[0.32079 0.35989]m and [-1.0315 -0.63184]m for x, y and z

Fig. 6. Visual Comparison of Cassie Configuration with RBF networks outputs

co-ordinates respectively.

V. CONCLUSIONS

In this article, we have discussed the forward kinematics
methodology and provided a neural network based approach
to solve the inverse kinematics problem for Cassie robot.
RBF network is selected because of its ability to process non-
linear mapping. Going with Gaussian basis function for each
neuron provides a better precision and faster convergence. We
have trained the model with different number of hidden lay-
ers, training functions, number of neurons in hidden layers,
dataset size and type of data distribution to analyse the effect
of such parameters on our neural network by calculating MSE
for every joint angle and configuration in IV-D. Our future
work will build on the results that we have developed in this
paper, to compare with other neural networks, enhance the
dataset and calculate the corresponding joint torques to be
used as a feedback controller.

REFERENCES

[1] Avinash Siravuru. Geometric Control and Learning for Dynamic
Legged Robots. PhD thesis, Carnegie Mellon University, 2020.

[2] HY Lee, C Woernle, and M Hiller. A complete solution for the inverse
kinematic problem of the general 6r robot manipulator. 1991.

[3] Pei-Yan Zhang, Tian-Sheng Lü, and Li-Bo Song. Rbf networks-based
inverse kinematics of 6r manipulator. The International Journal of
Advanced Manufacturing Technology, 26(1-2):144–147, 2005.

[4] Cassie: Agility’s first product 2017-2019.
[5] IEEE Cassie Photos taken as Agility Robotics/Oregon State University.
[6] Fei Liu, Guanbin Gao, Lei Shi, and Yongfeng Lv. Kinematic analysis

and simulation of a 3-dof robotic manipulator. In 2017 3rd Interna-
tional Conference on Computational Intelligence & Communication
Technology (CICT), pages 1–5. IEEE, 2017.

[7] Syed Baqar Hussain, Farah Kanwal, et al. Design of a 3 dof robotic
arm. In 2016 Sixth International Conference on Innovative Computing
Technology (INTECH), pages 145–149. IEEE, 2016.

[8] Austin Gregg-Smith and Walterio W Mayol-Cuevas. Inverse kinemat-
ics and design of a novel 6-dof handheld robot arm. In 2016 IEEE
International Conference on Robotics and Automation (ICRA), pages
2102–2109. IEEE, 2016.

[9] KangKyu Lee, Jaesung Oh, Okkee Sim, Hyoin Bae, and Jun-Ho Oh.
Inverse kinematics with strict nonholonomic constraints on mobile
manipulator. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 2469–2474. IEEE, 2017.

[10] Giresh K Singh and Jonathan Claassens. An analytical solution for the
inverse kinematics of a redundant 7dof manipulator with link offsets.
In 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 2976–2982. IEEE, 2010.

[11] Gaurav Tevatia and Stefan Schaal. Inverse kinematics for humanoid
robots. In Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Pro-
ceedings (Cat. No. 00CH37065), volume 1, pages 294–299. IEEE,
2000.

[12] Alain Liegeois et al. Automatic supervisory control of the configu-
ration and behavior of multibody mechanisms. IEEE transactions on
systems, man, and cybernetics, 7(12):868–871, 1977.

[13] Dinesh Manocha and John F Canny. Efficient inverse kinematics
for general 6r manipulators. IEEE transactions on robotics and
automation, 10(5):648–657, 1994.

[14] Yugui Yang, Guangzheng Peng, Yifeng Wang, and Hongli Zhang. A
new solution for inverse kinematics of 7-dof manipulator based on
neural network. In 2007 IEEE International Conference on Automation
and Logistics, pages 1958–1962. IEEE, 2007.

[15] Morteza Alebooyeh and R Jill Urbanic. Neural network model for
identifying workspace, forward and inverse kinematics of the 7-dof
yumi 14000 abb collaborative robot. IFAC-PapersOnLine, 52(10):176–
181, 2019.

[16] Raşit Köker, Tarık Çakar, and Yavuz Sari. A neural-network committee
machine approach to the inverse kinematics problem solution of robotic
manipulators. Engineering with Computers, 30(4):641–649, 2014.

[17] RaşIt KöKer. A genetic algorithm approach to a neural-network-based
inverse kinematics solution of robotic manipulators based on error
minimization. Information Sciences, 222:528–543, 2013.

[18] Ahmed RJ Almusawi, L Canan Dülger, and Sadettin Kapucu. A
new artificial neural network approach in solving inverse kinematics
of robotic arm (denso vp6242). Computational intelligence and
neuroscience, 2016, 2016.

[19] Yukai Gong, Ross Hartley, Xingye Da, Ayonga Hereid, Omar Harib,
Jiunn-Kai Huang, and Jessy Grizzle. Feedback control of a cassie
bipedal robot: Walking, standing, and riding a segway. In 2019
American Control Conference (ACC), pages 4559–4566. IEEE, 2019.

[20] F Merat. Introduction to robotics: Mechanics and control. IEEE
Journal on Robotics and Automation, 3(2):166–166, 1987.

[21] X Wen, L Zhou, and DL Wang. Matlab neural networks design and
application. Science, Beijing, 2000.

[22] Bruce Huang Ross Hartley, Ayonga Hereid. URDF model of CASSIE
robot, Dec 2018.

[23] Ali Al Bataineh and Devinder Kaur. A comparative study of different
curve fitting algorithms in artificial neural network using housing
dataset. In NAECON 2018 - IEEE National Aerospace and Electronics
Conference, pages 174–178, 2018.

https://www.agilityrobotics.com/robots#cassie
https://robots.ieee.org/robots/cassie/?gallery=photo2
https://github.com/UMich-BipedLab/cassie_description/tree/master/urdf
https://github.com/UMich-BipedLab/cassie_description/tree/master/urdf

	Introduction
	Related work
	Bipedal Robot Kinematics
	Kinematic Modelling of Cassie
	Forward Kinematics Methodology for Cassie
	Inverse Kinematics (IK) Methodology for Cassie

	Simulation
	Setup
	Dataset Generation
	Training using RBF
	Results and Analysis
	Performance variation with dataset size
	Performance variation with data distribution
	Performance variation with network parameters
	Performance variation with training function

	Conclusions
	References

