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SUMMARY

The thesis analyzes the input-to-state stability (ISS) properties of control Lyapunov

functions (CLFs) that stabilize hybrid systems. Systems that are input-to-state stable tend

to be robust to modeling and sensing uncertainties. This dissertation will show that, given

the class of control Lyapunov functions (CLFs), a subset of this class of control Lyapunov

functions (CLFs) that input-to-state stabilize the given hybrid system, exists. These func-

tions are called the input-to-state stabilizing control Lyapunov functions (ISS-CLFs). As an

application, these ISS-CLFs are constructed for bipedal robots, which belong to a special

class of hybrid systems: systems with impulsive effects. Bipedal robotic behaviors such

as walking, running and dancing are implemented by utilizing variants of input-to-state

stabilizing controllers both in simulations and experiments.

Controllers that are functions of the states and the model of the system are highly sen-

sitive to imperfections in real world implementation, which leads to undesirable behaviors.

These imperfections are captured by the notion of ISS in a way in which the deviation from

the desired output is a function of the deviation from the stabilizing control input. The

first step of this thesis is the stabilization of these imperfect nonlinear systems by identify-

ing input-to-state stabilizing CLFs. This study analyzes general control systems and then

further analyzes affine control systems. The second step of the thesis is the utilization of

these ISS-CLFs in hybrid systems: a sequence of continuous and discrete events. Formu-

lations derived for continuous systems do not always extend to general hybrid systems.

The focus of this study, therefore, will shift to a special class of hybrid systems, systems

with impulsive effects. This class of hybrid systems naturally model bipedal robots, which

consist of high degrees of underactuation and impacts that are not just uncontrollable but

also highly nonlinear. Under this class of hybrid systems, CLFs and the corresponding

ISS-CLFs will be analyzed theoretically and experimentally. Controllers such as asymptot-

ically stabilizing control Lyapunov functions (AS-CLFs), exponentially stabilizing control

xviii



Lyapunov functions (ES-CLFs), and rapidly exponentially stabilizing control Lyapunov

functions (RES-CLFs) will be investigated. With these controllers, the ISS analysis will

be mainly conducted on two kinds of input uncertainties, parameter and phase, which are

frequently observed in bipedal robots. For completeness, this study will also include other

uncertainties in a single chapter. The result of this analysis is the construction of input-to-

state stabilizing controllers that are indeed robust to a wide array of uncertainties.

For parameter uncertainty, we first derive a nominal CLF-based controller that stabi-

lizes a known model. Then, using the principles of ISS, we combine a computed torque

term with a traditional PD term to derive a robust CLF-based controller that stabilizes the

uncertain model. The goal of this implementation is to show that the robust CLF-based con-

troller renders the system input-to-state stable with regard to a measure input, from which

the parameter uncertainty is obtained. If traditional methods yield ultimate boundedness

for a bounded parameter uncertainty, the proposed measure establishes parameter-to-state

stability of the hybrid system, which is demonstrated on the bipedal robot AMBER with

a modeling error of 30%, in which the stability of the proposed controller is verified in

simulation. In a similar manner, to address the problem of implementing state-based pa-

rameterized trajectories on complex robotic systems, we first derive a class of state-based

CLFs that render the ideal system stable, and then a class of ISS-CLFs, specifically a class

of time+state-based CLFs, and show that the resulting hybrid system is phase to state sta-

ble. This property is demonstrated experimentally in the form of walking and running in

the bipedal robots DURUS and DURUS-2D, respectively.
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CHAPTER 1

INTRODUCTION

1.1 Background

Real-world implementations of controllers are always accompanied by imperfections such

as input saturation, noisy sensing, inaccurate parameter estimation, and unmodeled distur-

bances, to name a few. A fitting argument that explains these imperfections/limitations

is: this imperfection does not lie in the system to be stabilized, but in the knowledge that

is needed to stabilize. The gap is in the implementation difficulties of the controller, due

to uncertain states and model information. The theory of input-to-state stability (ISS)

provides an elegant framework for capturing the effect of these imperfections/uncertainties

on the control objective. As suggested by the name, the notion of input-to-state stability

(ISS) studies the behavior of the output perturbations of a system as a function of the input

perturbations.

The fact that there is no equation in this world that represents a real world system, is

indeed, a profound statement. The whole concept of using feedback was born out of the

necessity to overcome uncertainties [8]. George Zames and his successors did revolution-

ary work with regards to stabilization of input/output LTI systems. Some of the methods

include H2, H∞, L1 [9]. These are famously called as operator theory based approaches.

Sontag combined this input/output approach and the Lyapunov based state space stability

approach for nonlinear systems, calling it the notion of input-to-state stability [10]. Based

on the formulations that followed, the idea was to capture all kinds of uncertainties in a

unified framework, i.e., viewing the uncertainty as the deviation from a stabilizing control

input. Hence, systems are called input-to-state stable (ISS), if a small input (perturbation)

results in a small output (perturbation). With this understanding, it is claimed that systems
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that are input-to-state stable tend to be robust to modeling and sensing uncertainties. This

shift of focus from obtaining just a stabilizing controller to obtaining an input-to-state sta-

bilizing controller that yields very low perturbations on the states had implications in the

field of control theory.

For affine control systems, it is indeed possible to obtain an input-to-state stabilizing

control law, given a stabilizing control law (see Fig. 1.1). This is a seminal work by Sontag

[11] and has been extended to more complex forms of dynamical systems, namely hy-

brid systems [12, 13]. Hybrid systems are systems that can represent both the continuous

and discrete events simultaneously. Large classes of systems can be represented as hy-

brid systems: systems with impulses, logic commands, continuous-time and discrete-time

dynamics, jump phenomena, switching networks, switching power supplies and so on. In-

formally speaking, a hybrid system is an alternating sequence of continuous and discrete

dynamics. Given a stabilizing control law, it is indeed possible to obtain control laws that

input-to-state stabilize a hybrid system. [14] proved this result for linear switched sys-

tems. [15] proved the result for a general case and also derived Lyapunov functions that

characterize hybrid input-to-state stability. In fact, [15] showed that under strengthened

input-to-state stability conditions, one can show the existence of ISS-Lyapunov functions

for hybrid systems.

Realization of stabilizing control laws (stabilizability in short) for hybrid systems has

been studied extensively in literature [16]. Some of the problems addressed are finding a

common Lyapunov function [17, 18], stability under fast switching [19, 20], stabilization

via discrete events [21, 22]. Stabilization via Lyapunov functions, or rather, stabilization

via control Lyapunov functions (CLFs) was mainly conceived and popularized by Art-

stein and Sontag [23, 24] during 1980’s, and extended to hybrid systems during late 2000’s

[25]. CLFs enable the use of dynamic programming approaches to obtain optimal inputs in

real-time controllers [26]. Some examples include [27, 28, 29]. This was a major step in

optimal control theory due to the fact that the CLFs enabled the end user to be able to pick
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Figure 1.1: Pictorial representation of the classes of controllers that are input-to-state sta-
bilizable. It can be observed that based on [11], all stabilizable affine control systems are
input-to-state stabilizable. The blocks are not to scale.

from a choice of stabilizing control inputs. For real-time computations, one can choose a

control law that satisfies a CLF based constraint along with other physical constraints such

as input saturations, velocity/angle limits and also barrier certificates [30]; the end result

being an optimal control strategy to drive the states of the system to the desired values.

As the complexity of the system increases, it is desirable to seek stabilization properties

via control Lyapunov functions (CLFs). The complexity can grow in two folds: increase in

the order of the system, and, increase in the dynamic behaviors. For example, for bipedal

robots, adding more degrees of freedom and also achieving dynamic maneuvers like run-

ning add complexity to the control requirements. Implementation of stabilizing controllers

gets harder with these systems due to under-actuations and extremely noisy impacts, bring-

ing with itself a larger challenge. Coupled with the fact that as the complexity increases

the uncertainty increases, we are presented with practical limitations of implementing a

suitable control law. For complex hybrid systems such as these, investigating input-to-state

stability (ISS), i.e., studying output perturbations for all kinds of input perturbations seems
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Figure 1.2: Pictorial representation of a hybrid system with a single continuous and a single
discrete event. The continuous event is affine in controls, and the discrete event does not
have a control input in this case. This type of hybrid system belongs to a class called
systems with impulses. x is the state, u is the control input.

like an unavoidable task.

1.2 Main Contribution

The main contribution of this thesis is in the construction of a class of control Lyapunov

functions (CLFs) that are input-to-state stabilizing. As such, a lot of the controllers ex-

amined in the thesis by default satisfy basic ISS properties, a major goal of constructing

input-to-state stabilizing CLFs is to squeeze the best out of a given hybrid system. Example

systems studied in the thesis are bipedal robots, one of the hardest hybrid system models to

stabilize. Dynamics are highly nonlinear and under-actuated, and also undergo uncontrol-

lable discrete transitions (impacts). Therefore, the ultimate objective is to achieve dynamic

behaviors such as walking, running, dancing from these systems. It is important to note

that bipedal locomotion is an example, while the proofs shown are for all kinds of hybrid

systems. Fig. 1.2 is a pictorial representation for a hybrid system with a single continuous

and a discrete event.

Through the use of constructions given by Sontag [11], it can be easily shown that, it is

indeed possible to find a subset of input-to-state stabilizing CLFs from a given set of CLFs.
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Figure 1.3: Outline and flow of the thesis.

The core advantage is the increase in the number of choices from just one to infinitely

many, a necessity for optimal control approaches. This can be extended to hybrid sys-

tems, although, satisfying weak assumptions. In other words, for a general hybrid system,

existence of a stabilizing controller implies existence of a weak input-to-state stabilizing

controller. But, for a class of hybrid systems that contain continuous dynamics affine in

controls, and uncontrollable discrete dynamics, strong input-to-state stability conditions

can be satisfied. Note that there are conditions such as mean dwell time, rapid exponential

convergence, hybrid invariance utilized for stabilizing hybrid systems via only the contin-

uous dynamics. The first two parts of the thesis will focus on constructing ISS-CLFs for

both continuous and hybrid systems and also determine conditions for hybrid invariance

properties. The third and final part will discuss implementing these robust controllers in

bipedal robots to realize walking, running and also dancing. Fig. 1.3 shows the brief outline

of the thesis in block diagrams.
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1.3 Brief Outlines of Chapters

Chapter 2: Preliminaries on Input-to-State Stability. This chapter contains a brief pre-

liminary on input-to-state stability. It contains basic definitions of stability, exponential

stability and other important properties that are required to define ISS and its properties.

Chapter 3: Control Lyapunov Functions. Obtained from the works of Artstein [23]

and Sontag [24], this chapter contains the definitions of CLFs and the corresponding ISS-

CLFs. It also defines the classes of asymptotically stabilizing control Lyapunov functions

(AS-CLFs), exponentially stabilizing control Lyapunov functions (ES-CLFs), and the set

of rapidly exponentially stabilizing control Lyapunov functions (RES-CLFs). Correspond-

ingly, this chapter will also define the set of exponential-input-to-state stabilizing con-

trol Lyapunov functions (e-ISS-CLFs), rapidly-exponential-input-to-state stabilizing con-

trol Lyapunov functions (Re-ISS-CLFs). RES-CLFs and Re-ISS-CLFs are important for

the exponential stabilization of hybrid periodic orbits (see [28]).

Chapter 4: Hybrid Systems. This chapter will introduce the definition of hybrid systems

and the notion of input-to-state stability for hybrid systems. Informally speaking, hybrid

system is an alternating sequence of continuous and discrete events. Category theory is

used for the definition [12]. A wide variety of classes of hybrid systems can be described

in this manner such as mechanical systems, networked control systems, switching power

systems, embedded systems and so on.

Chapter 5: Input-to-State Stabilizing Control Lyapunov Functions and Hybrid Zero

Dynamics. This chapter will construct CLF based controllers for the hybrid system models

defined in Chapter 4. If trajectory tracking is involved, then output dynamics are computed

for stability analysis. For bipedal robots, since some of the joints are not necessarily ac-

tuated, the notion of zero dynamics and partial zero dynamics are studied. In fact, it will

be shown that the output coordinates and the zero coordinates form the transformed states-
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pace for the original system. Therefore, the original statespace can be transformed into the

corresponding transverse and zero coordinates via a diffeomorphism. This is an important

step leading to analysis of stability of partially observable/controllable continuous dynam-

ics of the hybrid systems. In fact, this chapter ends with Theorems 3 and 4, which use the

property of exponential stabilizability of the continuous dynamics to realize exponential-

input-to-state stabilizing control Lyapunov functions that input-to-state stabilize the entire

hybrid system.

Chapter 6: Hybrid System Model of Bipedal Robots. This chapter will describe the

hybrid system models for specific cases of bipedal robots such as AMBER1, AMBER2,

DURUS, DURUS-2D. The main goal is to identify relative degree, under-actuations, out-

puts and also inputs for these systems. The objective is not just to drive the states of these

robots to zero. Some applications require trajectory tracking of outputs (functions of the

states), and the resulting output dynamics need to be investigated.

Chapter 7: Dynamics of Uncertainty. This chapter will describe how to model uncer-

tainties and analyze the stability properties of the resulting uncertain system. A detailed

list of controllers used is given in Fig. 1.4. ISS properties are shown for even traditional

controllers like PD in this chapter. The kinds of uncertainties discussed are modeling, volt-

age inputs, unknown Coriolis-centrifugal effects and gravity effects. Two specific kinds of

uncertainties, parameter and phase, will be picked and discussed in Chapters 8 and 9 and

different variants of ISS-CLFs will be developed. Details of these two chapters are given

next.

Chapter 8: Parametery Uncertainty to State Stability. This chapter will show that CLFs

with a model mismatch can be shown to be parameter-to-state stable for the nonlinear

hybrid system model of a robotic system undergoing impacts. In other words, despite the

differences in the model, the model based CLF based controller will still yield a bounded

output error for a bounded function of parameter uncertainty. To establish this fact, a
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AMBER1 AMBER2 PROXI DURUS DURUS-2D
P Voltage Control PD current control PD current control PD current 

control+Regulators, 
Time based 
parameterization

PD current control,
Time+state based 
parameterization

2011 2013 2014 2015 2016

Conclusions

63Figure 1.4: Progression of the walking controllers used on the robots over the years in
AMBER Lab. From left to right: AMBER1, AMBER2, PROXI, DURUS humanoid, and
the running robot DURUS-2D.

measure for parameter uncertainty for both the continuous and discrete map will be defined.

This will be illustrated through the examination of a representative robotic system: the

bipedal robot AMBER1 (shown in Fig. 6.1). There are other approaches like [31] that

use control Lyapunov functions to achieve exponential convergence to zero under bounded

uncertainty. Our objective is the same, i.e., utilize control Lypapunov functions to obtain

exponential convergence, but, to an ultimate bound (in other words, convergence to small

acceptable tracking errors). This formal construction helps in obtaining controllers that are

not only highly convergent, but also robust to the model mismatch, getting the best from the

two worlds. It will be shown with a CLF based controller, computed torque+PD, resulting

in a stable walking gait for the robot in simulation.

Chapter 9: Phase Uncertainty to State Stability. Bipedal robotic walking (or running),

at a fundamental level, uses a set of reference trajectories (gaits) that are modulated (pa-

rameterized) by a phase variable. The phase variable is usually a monotonic function of the

configuration of the robot. Suitable candidates are calf angle, hip position that propagate
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forward in time. The state dependency of the modulation of the desired trajectories forms

the basis for realizing stable walking that show reactive behavior to pushing or pulling. As

the complexity of the robot increases (in terms of both DOF and dynamic behaviors), the

state dependency of the controller becomes more of a curse to the stability of the robot.

Therefore, the goal of this chapter is to study phase based uncertainties of the system, and

realize robust controllers via CLFs. Accordingly, controllers that rely on time instead of

the phase are realized for smoother modulation. The end result is the construction of time

dependent CLFs and the corresponding time dependent ISS-CLFs. Importantly, these re-

sults are verified both in simulation and experimentally on the walking robot DURUS and

on the running robot DURUS-2D (left and right in Fig. 6.7 respectively).

Chapter 10: Aperiodic Systems: Dynamic Dancing. In this chapter, which is the final

chapter, we will analyze input-to-state stability properties of aperiodic hybrid systems. The

example picked is dynamic dancing of AMBER2. We will show that different dynamic

behaviors can be combined together to form a meta-hybrid system. Again, the stability of

this meta-hybrid system is ensured via the use of controllers that are input-to-state stable.
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Part I

Continuous Systems
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CHAPTER 2

PRELIMINARIES ON INPUT TO STATE STABILITY

In this chapter we will introduce basic definitions and results related to input to state stabil-

ity (ISS) (henceforth, hyphen removed from input-to-state) for a general nonlinear system

and then focus on robotic systems for experimental results; see [10] for a detailed survey

on ISS. Most of the content here is taken from [11, 32, 33, 34, 35, 36]. A general nonlinear

system with outputs is represented in the following fashion:

ẋ =f(x, u), (2.1)

with x taking values in Euclidean space Rn, the input u ∈ Rm for some positive integers

n,m. We can also define the set of outputs y : Rn → Rk for some positive integer k. The

mapping f : Rn × Rm → Rn is smooth and f(0, 0) = 0. We can define a set of outputs

y : Rn → Rk that is continuous with y(0) = 0. We use a feedback control law

u = k(x), k(0) = 0, (2.2)

that makes the closed loop system

ẋ =f(x, k(x)) =: f cl(x), (2.3)

globally asymptotically stable about x = 0. We say that a controller, k(x), is stabilizing

if it makes the closed loop system (2.3) globally asymptotically stable. There are many

variants of this general problem, which differ on the degree of smoothness required of k,

as well as on the structure assumed of the original system. This type of problem is called

a state space stabilization problem. We make a blanket assumption that f is smooth. We
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can also use weaker conditions like Lipschitz continuity of f w.r.t. x and u. In fact, a large

part of the proofs covered in the thesis uses this assumption. Mathematically, the notion

of input/output stability arises from the need to find a feedback (2.2) with the property that

the new control system

ẋ = f(x, k(x) + d), (2.4)

be input to state stable. In essence, what is desired is that when the external perturbation

input d in (2.4) is identically zero, the system (2.3) be globally asymptotically stable about

x = 0 (so, this includes state-space stability) and that, in addition, a nice input d 6= 0 should

produce a nice state trajectory x(t) when starting at any initial state x(0). We call this type

of question an input/output stabilization problem. For partial observations of interest, we

can be more precise about the stabilization of the states by referring to it as input d to state

x stabilization problem.

It is a well known fact that the feedback control law k(x) that achieves state-space

stabilization does not necessarily produce input/output stabilization. Classes of systems

that satisfy this property are of interest to us. We will state some basic definitions here.

The field R is the set of real numbers, Rn denotes n dimensional Euclidean space, R≥0

denotes nonnegative real numbers. N is the set of natural numbers, and N0 denotes the set

of nonnegative integers, i.e., {0, 1, 2, . . . }. The vectors y1 ∈ Rk1 , y2 ∈ Rk2 , when combined

together into one vector are denoted by (y1, y2) = [yT1 , y
T
2 ]T . 1 denotes an identity matrix,

and 0 denotes a matrix of zeros. Also, 1n×n denotes an n× n identity matrix (similarly for

0n×n). |x| is the Euclidean vector norm. It is assumed that the disturbance d belongs to the

space of all Lebesgue measurable functions, Lm∞. It is defined as

‖d‖∞ := ess sup
t≥0

{|d(t)|} <∞. (2.5)

So we have the set Lm∞ = {d ∈ Rm|‖d‖∞ < ∞}. The matrix norm is denoted by ‖P‖,
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which is its maximum eigenvalue.

Definition 1. The equilibrium point, x = 0, of the system (2.3) is stable if ∀ δ1 > 0, ∃

δ2 > 0 such that |x(t)| ≤ δ1 ∀ |x(0)| ≤ δ2, t > 0.

|x| denotes the usual Euclidean norm of a vector x.

Definition 2. The equilibrium point, x = 0, of the system (2.3) is asymptotically stable if it

is stable and attractive, i.e., |x(t)| → 0 as t→∞.

As mentioned before, if the controller (2.2) stabilizes the system (2.1), then the system

(2.3) is asymptotically stable.

Definition 3. The equilibrium point, x = 0, of the system (2.3) is exponentially stable if

there are constants δ1, δ2 > 0 such that |x(t)| ≤ δ1e
−δ2t|x(0)|.

We can define stabilizability as follows.

Definition 4. The system (2.1) is smoothly (continuously) stabilizable if there is a smooth

(Lipschitz continuous) mapping k : Rn → Rm such that, under the control law u = k(x),

the closed loop system (2.3) is asymptotically stable.

We also have other forms of stability such as the bounded input bounded output stability

(BIBO), bounded input bounded state (BIBS) stability that are prominently used in linear

systems. This notion is, in fact, extended to nonlinear systems via input to state stability.

Definition 5. The system (2.4) is bounded input bounded state stable (BIBS) if for each

δ1 > 0 ∃ δ2 > 0 such that, for each bounded measurable control input d with ‖d‖∞ < δ1,

and each initial condition |x(0)| < δ1, the solution satisfies |x(t)| ≤ δ2 for all t > 0.

We have the following theorem, for which the proof can be found in [32].
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Lemma 1. Assume that

• f is globally Lipschitz, and

• the system (2.3) is globally exponentially stable. Then the system (2.4) is bounded

input bounded stable (BIBS).

Somewhat weaker conditions on f would suffice, for instance that f(x, u) be globally

Lipschitz on u alone, but uniformly on x, or even that an estimate |f(x, u) − f(x, 0)| ≤

f ′(u) holds, for some function f ′. A good application of this lemma is for the class of

controllers that yield exponential convergence, which are by default made ISS.

2.1 Input to State Stability

Class K,K∞ and KL functions. A class K function is a function α : [0, a) → R≥0,

which is continuous, strictly increasing and satisfies α(0) = 0. A class K∞ function is

a function α : R≥0 → R≥0, which is continuous, strictly increasing, unbounded, and

satisfies α(0) = 0, and a class KL function is a function β : R≥0 × R≥0 → R≥0 such that

β(r, t) ∈ K∞ for each t and β(r, t)→ 0 as t→∞.

We can now define ISS for the entire dynamics of (2.4). It is important to note that

the input treated for ISS is the disturbance d. Therefore, all ISS and related definitions are

w.r.t. d. Let x0 = x(0).

Definition 6. The system (2.4) is input to state stable(ISS) if there exists β ∈ KL, and

ι ∈ K∞ such that

|x(t, x0, d)| ≤ β(|x0|, t) + ι(‖d‖∞), ∀x0,∀t ≥ 0,∀d, (2.6)

and (2.4) is locally ISS, if the inequality (2.6) is valid for an open ball of radius r, x0 ∈

Br(0).
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Definition 7. The system (2.4) is exponential input to state stable (e-ISS) if there exists

β ∈ KL, ι ∈ K∞ and a positive constant λ > 0 such that

|x(t, x0, d)| ≤ β(|x0|, t)e−λt + ι(‖d‖∞), ∀x0,∀t ≥ 0, ∀d, (2.7)

and (2.4) is locally e-ISS, if the inequality (2.7) is valid for an open ball of radius r, x0 ∈

Br(0).

It was mentioned in Lemma 1 that the exponential stability of f implies BIBS. This

consequently implies ISS, based on the Definition 6.

Definition 8. The system (2.4) is input to output stable(IOS) if there exists β ∈ KL, and

ι ∈ K∞ such that

|y(t, x0, d)| ≤ β(|x0|, t) + ι(‖d‖∞),∀x0,∀t ≥ 0, ∀d, (2.8)

and (2.4) is locally ISS, if the inequality (2.6) is valid for an open ball of radius r, x0 ∈

Br(0).

Definition 9. The system (2.4) is said to hold the asymptotic gain (AG) property if there

exists ι ∈ K∞ such that

limt→∞|x(t, x0, d)| ≤ ι(‖d‖∞), ∀x0,∀d, (2.9)

where the limt→∞ denotes the supremum of the limit of x as t → ∞ (the state x is not

required to have a limit).

It is important to note that the AG property implies BIBS of the system (2.4), but the

converse is not true. Based on the inequality (2.9) this becomes intuitively obvious, since
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the boundedness on the right hand side of (2.9) is a function of the input d. This is not

necessarily true for systems that are BIBS.

Definition 10. The system (2.4) is said to be zero stable (ZS) for a zero input d = 0, if there

exists β ∈ KL such that

|x(t, x0, 0)| ≤ β(|x0|, t), ∀x0,∀t ≥ 0. (2.10)

By this definition, ZS =⇒ asymptotic stability of the system with a zero input.

We can use the ZS (2.10) and AG property (2.9) to establish ISS.

Lemma 2. The system (2.4) is ISS if and only if it is ZS and AG.

Based on these definitions, we can define the notion of input to state stabilizability.

Definition 11. A system of the form (2.1) is smoothly (continuously) input to state stabiliz-

able if there exists a smooth (continuous) control law k : Rn → Rm such that, under the

control law u = k(x) + d, the new system (2.4) is input to state stable.

We also have special definitions that are not frequently used such as weak input to state

stability, defined for controllers of the form:

u = k(x) + g′(x)d, (2.11)

which has the continuously differentiable map k : Rn → Rm, with k(0) = 0 and a matrix

g′(x) ∈ Rm×m with the mapping g′ : Rn → Rm×m consisting of continuously differen-

tiable functions, invertible for each x, and d is the new input under consideration. The

resulting control system is the following:

ẋ = f(x, k(x) + g′(x)d). (2.12)
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We have the following definition for weak input to state stability.

Definition 12. The system (2.1) is weakly input to state stabilizable, if there exists a con-

tinuously differentiable map k : Rn → Rm, with k(0) = 0 and a matrix g′ : Rn → Rm×m

consisting of continuously differentiable functions, invertible for each x, such that under

the control law (2.11) that system (2.12) is ISS.

This type of stability is of less interest to us, since we are interested in systems where

g′(x) ≡ 1 is an identity. But, a special property of these systems is that it is possible to

obtain g′(x) that makes the system (2.12) ISS given that there exists a stabilizing control

law k(x) (from (2.2)). More on this is given in [32].

2.2 Input to State Stable Lyapunov Functions

A direct consequence of using ISS concepts is the construction of input to state stable

Lyapunov functions. In other words, we can develop Lyapunov functions that also satisfy

a set of ISS conditions, and that results in ISS of the control system (2.4).

Definition 13. A continuous function V : Rn → R≥0 is a storage function if it is positive

definite and proper, that is, V (x)→∞ as x→∞. It is easy to show that V (x) is a storage

function if and only if there exist α, ᾱ ∈ K∞ such that

α(x) ≤ V (x) ≤ ᾱ(x), ∀x ∈ Rn. (2.13)

Note that the lower bound amounts to properness and V (x) > 0 for x 6= 0, while the upper

bound ensures V (0) = 0.

Definition 14. An ISS-Lyapunov function for ẋ = f(x, k(x) + d) is a smooth storage

function V : Rn → R≥0, for which there exist functions ι, α ∈ K∞ such that

V̇ (x, d) ≤ −α(|x|) + ι(‖d‖∞), ∀x, d. (2.14)
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Figure 2.1: zero stability is achieved for a zero input, and asymptotic gain is achieved for a
bounded input. We use these two important properties to prove input to state stability.

In other words, an ISS-Lyapunov function is a smooth solution of the inequality of the form

(2.14).

The following lemma establishes the relationship between the ISS-Lyapunov function and

the ISS of (2.4).

Lemma 3. The system (2.4) is ISS if and only if it admits a smooth ISS-Lyapunov function.

Proof of Lemma 3 is given in [10] and in [11]. In fact the inequality condition can be made

stricter by using the exponential estimate for some c > 0:

V̇ (x, d) ≤ −cV (x) + ι(‖d‖∞), ∀x, d, (2.15)

which is then called the e-ISS-Lyapunov function. We also have the rapidly exponential

estimate given by the following:

V̇ (x, d) ≤ −c
ε
V (x) + ι(‖d‖∞), ∀x, d, (2.16)

where 0 < ε < 1. The rapid exponential estimate is important in the context of hybrid

systems (see Definition 27).

For systems of the form (2.12), weak-ISS-Lyapunov functions are used.
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Definition 15. A weak-ISS-Lyapunov function for ẋ = f(x, k(x) + g′(x)d) is a smooth

storage function V : Rn → R≥0, for which there exist functions ι, α ∈ K∞ such that

V̇ (x, d) ≤ −α(|x|) + ι(‖d‖∞), ∀x, d. (2.17)

2.3 Input to State Stability of Affine Control Systems

We can pick affine control systems of the form

ẋ = f(x) + g(x)u, f(0) = 0 (2.18)

where g(x) ∈ Rn×m, a smooth function of x. Similar to (2.1), it is assumed that f(0) = 0

(to satisfy the requirement u = k(0) = 0), both f, g are Lipschitz in x. The main result of

[11] was that systems of the type (2.18) can be made input to state stable. In other words,

the affine system, (2.18), is smoothly input to state stabilizable, i.e., there exists a smooth

map k : Rn → Rm, with k(0) = 0, and the control law k(x) + d, such that the new system

ẋ = f(x) + g(x)k(x) + g(x)d (2.19)

is ISS. This definition can be extended to almost smooth maps k as well, where almost

smooth means that the controller is continuous at 0.

We can define the notion of ISSability (input to state stabilizability), which is a powerful

tool to obtain controllers that satisfy the ISS conditions. A detailed analysis of stabilizabil-

ity is given in [11]. We investigated weak stabilizability in Definition 12, which is obtained

from [32]. Rephrasing this definition, Theorem 1 in [32] states that existence of a smooth

stabilizing conrol law k(x) implies weak input to state stabilizability. This notion of weak

stabilizability gets stronger for affine systems of the form (2.18). This section will dwell

more into this topic.
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Definition 16. The system (2.18) is smoothly stabilizable, if there is a smooth map k :

Rn → Rm with k(0) = 0 such that the system (2.18) is GAS. It is smoothly input to state

stabilizable if there is a k so that the system (2.19) becomes ISS.

Based on this definition, we have this powerful Lemma that is taken from Theorem 1

of [11] and restated here.

Lemma 4. For systems of the type (2.18) smooth stabilizability implies smooth input to

state stabilizability.

Proof of this lemma is given in [11]. The controller that is derived from this paper will

be given in Chapter 3. As mentioned before, the smoothness conditions can be relaxed to

construct Lipschitz continuous control laws for the latter part of the thesis.

2.4 Input to State Stability of Discrete Time Control Systems

We can pick discrete time systems of the form

x(i+ 1) = f(x(i), u(i)). (2.20)

or affine discrete systems of the form

x(i+ 1) = f(x(i)) + g(x(i))u(i). (2.21)

A stabilizing controller u(i) = k(x(i)) is applied such that the system

x(i+ 1) = f(x(i)) + g(x(i))k(x(i)) + g(x(i))d, (2.22)

be bounded for small bounded perturbations d.
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Definition 17. We say that (2.22) is input to state stable if β ∈ KL, and ι ∈ K∞ such that

|x(i, x0, d)| ≤ β(|x0|, i) + ι(‖d‖∞), ∀x0,∀i ∈ N,∀d (2.23)

and we say that (2.22) is exponential input to state stable if for some λ > 0

|x(i, x0, d)| ≤ β(|x0|, i)e−λi + ι(‖d‖∞), ∀x0,∀i ∈ N,∀d (2.24)

Definition 18. A continuous function V : Rn → R≥0 is called an ISS-Lyapunov function

for system (2.22) if there exist α, ᾱ, α, ι ∈ K∞ such that

α(|x(i)|) ≤ V (x(i)) ≤ ᾱ(|x(i)|) (2.25)

and V (x(i+ 1))− V (x(i)) ≤ −α(|x(i)|) + ι(‖d‖∞),∀i ∈ N,∀x, d.

It can be observed that smoothness conditions can also be imposed on V , but not really

necessary.

Lemma 5. As in the classic Lyapunov stability theory, the discrete-time system (2.22) is

ISS if and only if it admits a discrete-time continuous ISS-Lyapunov function.

For continuous affine systems, continuous stabilization implies ISS stabilization ac-

cording to Lemma 4. This is not the case any more for discrete systems, and the notion

of weak input to state stabilizability is applied. See [37] for more details. The discrete

time continuous controller u(i) = k(x(i)) is weak input to state stabilizing, if there is an

invertible map g′ : Rn → Rm×m of continuous functions, such that the system

x(i+ 1) = f(x(i), k(x(i)) + g′(x(i))d) (2.26)

is input to state stable. We therefore have weak-ISS-Lyapunov functions for discrete time
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systems of the form (2.26).

Definition 19. A continuous function V : Rn → R≥0 is called a weak-ISS-Lyapunov

function for system (2.26) if there exists g′(x) ∈ Rm×m invertible and continuous, and

α, ᾱ, α, ι ∈ K∞ such that

α(|x(i)|) ≤ V (x(i)) ≤ ᾱ(|x(i)|) (2.27)

and V (f(x(i), k(x(i)) + g′(x)d))− V (x(i)) ≤ −α(|x(i)|) + ι(‖d‖∞), ∀i ∈ N,∀x, d.

Based on this definition of weak-ISS-Lyapunov functions, we have the following Lemma.

Lemma 6. For systems of the form (2.20), existence of a continuously stabilizing controller

implies the existence of a weak input to state continuously stabilizing controller.

Proof of this Lemma can be found in [37]. Specifically, it is shown in Theorem 4 in the

cited paper.
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CHAPTER 3

INPUT TO STATE STABILIZING CONTROL LYAPUNOV FUNCTIONS

The goal of this chapter is to generalize and define the set of stabilizing controllers (i.e.,

not just one k(x)) via control Lyapunov functions (CLFs) that yield ISS. Specifically, in

the context of ISS, we will derive a sub-class of control Lyapunov functions (CLF) that

input to state stabilize the system (2.1). CLFs are obtained for the control input u, and the

ISS conditions are satisfied for the disturbance input d. These types of CLFs are famously

called input to state stabilizing control Lyapunov functions (ISS-CLFs). More details about

the definition of these ISS-CLFs can be found in [38, 39]. Towards the end of this Chapter,

we will derive this subclass for rapidly exponentially stabilizing control Lyapunov functions

(RES-CLF) that are important leading into the next chapter (for hybrid systems).

3.1 Control Lyapunov Functions

We will define the CLF here.

Definition 20. For the system (2.1), a continuously differentiable function V : Rn → R≥0

is an asymptotically stabilizing control Lyapunov function (CLF), if there exists a set of

admissible controls U ⊂ Rm, and α, ᾱ, α ∈ K∞ such that for all x

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

inf
u∈U

[LfV (x, u) + α(|x|)] ≤ 0. (3.1)

We are interested in affine systems of the form (2.18), which represents a large class of

systems (robotic systems are a prime example). So we can similarly define CLFs for such

systems by replacing LfV (x) with LfV (x) + LgV (x)u.
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We will define the exponentially stablilizing control Lyapunov function (ES-CLF), for

affine systems here.

Definition 21. For the system (2.18), a continuously differentiable function V : Rn → R≥0

is an exponentially stablilizing control Lyapunov function (ES-CLF) if there exists a set of

admissible controls U ⊂ Rm and positive constants c, c̄, c > 0 such that for all x

c‖x‖2 ≤ V (x) ≤ c̄‖x‖2

inf
u∈U

[LfV (x) + LgV (x)u+ cV (x)] ≤ 0, (3.2)

Lf , Lg are the Lie derivatives. We can accordingly define a set of controllers that render

exponential convergence of the states to 0

K(x) = {u ∈ U : LfV (x) + LgV (x)u+ cV (x) ≤ 0}, (3.3)

which has the control values that result in V̇ ≤ −cV .

3.2 Input to State Stabilizing Control Lyapunov Functions

We define here, a sub-class of CLFs, that are input to state stable. In other words, we

define input to state stabilizing control Lyapunov functions (ISS-CLFs). We will use

ISS-Lyapunov functions that are defined in Chapter 2. This definition is obtained from [38,

39] although different variants of this definition are possible (see [40]).

Definition 22. For the system (2.1), an asymptotically stabilizing CLF, V : Rn → R≥0

(Definition 20), is an input to state stable stabilizing control Lyapunov function (ISS-CLF),

if it satisfies the conditions of an ISS-Lyapunov function. In other words, a continuously

differentiable function V : Rn → R≥0 is an ISS-CLF, if there exists a set of admissible
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controls U ⊂ Rm, and α, ᾱ, α, ι ∈ K∞ such that

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

inf
u∈U

[LfV (x, u+ d)] ≤ −α(|x|) + ‖d‖∞, ∀x, d. (3.4)

We can use weak notions of ISS for systems of the form (2.1).

Definition 23. For the system (2.1), a continuously differentiable function V : Rn → R≥0

is a weak-ISS-CLF, if there exists a set of admissible controls U ⊂ Rm, a smooth invertible

matrix g′ : Rn → Rm×m, and α, ᾱ, α, ι ∈ K∞ such that

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

inf
u∈U

[LfV (x) + LgV (x, u+ g′(x)d)] ≤ −α(|x|) + ι(‖d‖∞), ∀x, d. (3.5)

We have a stronger definition for affine control systems of the form (2.18).

Definition 24. For the system (2.18), a continuously differentiable function V : Rn → R≥0

is an ISS-CLF, if there exists a set of admissible controls U ⊂ Rm, and α, ᾱ, α, ι ∈ K∞

such that

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

inf
u∈U

[LfV (x) + LgV (x)(u+ d)] ≤ −α(|x|) + ι(‖d‖∞), ∀x, d. (3.6)

Motivated by constructions of input to state stabilizable controllers developed by Son-

tag, specifically, equations (23) and (32) in [11], we can construct ISS-CLFs in the follow-

ing manner. Parts of these are also derived from Artstein’s theorem [23, 24]. Choosing the

stabilizing controller k(x) that resulted in the closed loop system (2.3) again, we have the

Lie derivative w.r.t. the closed loop vector field f cl as LfclV (x) = ∂V
∂x
f cl(x). It was shown
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in [11] that the controller

u = k(x) +
1

2m
LfclV (x)LgV (x)T , (3.7)

input to state stabilizes the system (2.1). We can derive a simpler controller like the follow-

ing, which also renders the system (2.4) ISS.

u = k(x)− 1

ε̄
LgV (x)T , (3.8)

for some ε̄ > 0. Based on this controller, we have the following Lemma, which defines a

new set of CLFs that input to state stabilizes the system (2.1).

Lemma 7. The continuously differentiable function V : Rn → R≥0 defined for α, ᾱ, α ∈

K∞ as

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

inf
u∈U

[LfV (x) + LgV (x)u+ α(|x|) +
1

ε̄
LgV (x)LgV (x)T ] ≤ 0, (3.9)

is an ISS-CLF ∀ ε̄ > 0.

Proof. We have the following expression after the derivative of the Lyapunov function:

V̇ (x, u+ d) = LfV (x) + LgV (x)(u+ d)

= LfV (x) + LgV (x)u+ LgV (x)d. (3.10)

After substituting the controller (3.9), we have

V̇ (x, u(x) + d) ≤ −α(|x|)− 1

ε̄
LgV (x)LgV (x)T + LgV (x)d. (3.11)

Since LgV (x) ∈ R1×m, and any matrix multiplied with the transpose of itself results in a
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nonnegative matrix, we have the following inequality after adding and subtracting ε̄‖d‖
2
∞

4
:

V̇ (x, u(x) + d) ≤ −α(|x|)− 1

ε̄
‖LgV (x)‖2 + ‖LgV (x)‖‖d‖∞ − ε̄

‖d‖2
∞

4
+ ε̄
‖d‖2

∞
4

≤ −α(|x|)−
(

1√
ε̄
‖LgV (x)‖ −

√
ε̄
‖d‖∞

2

)2

+ ε̄
‖d‖2

∞
4

≤ −α(|x|) + ε̄
‖d‖2

∞
4

, (3.12)

which is in the form given by (2.14). It can be observed that an excellent way to drive the

ultimate bound to a very small value is by decreasing ε̄.

If we pick an exponentially stabilizing control Lyapunov function (ES-CLF), (3.2), we can

modify (3.12) that results in exponential input to state stability (e-ISS) w.r.t. d.

Definition 25. For the system (2.18), an exponentially stabilizing CLF, V : Rn → R≥0

(Definition 20), is an exponential input to state stable stabilizing control Lyapunov function

(e-ISS-CLF), if it is satisfies the conditions of an e-ISS-Lyapunov function. In other words,

a continuously differentiable function V : Rn → R≥0 is an e-ISS-CLF, if there exists a set

of admissible controls U ⊂ Rm, and c, c̄, c > 0, and ι ∈ K∞ such that

c‖x‖2 ≤ V (x) ≤ c̄‖x‖2

inf
u∈U

[LfV (x) + LgV (x)(u+ d)] ≤ −cV (x) + ι(‖d‖∞), ∀x, d. (3.13)

We therefore have the following Lemma.

Lemma 8. The continuously differentiable function V : Rn → R≥0 defined for c, c̄, c > 0

as

c‖x‖2 ≤ V (x) ≤ c̄‖x‖2

inf
u∈U

[LfV (x) + LgV (x)u+ cV (x) +
1

ε̄
LgV (x)LgV (x)T ] ≤ 0, (3.14)
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is an e-ISS-CLF ∀ ε̄ > 0.

Proof. Proof is straightforward from (3.12), where α(|x|) needs to be simply replaced with

cV (x).

Motivated by Lemma 7 we can create a subclass of controllers from ES-CLF that are

e-ISS

Kε̄(x) = {u ∈ U : LfV (x) + LgV (x)u+ cV (x) +
1

ε̄
LgV (x)LgV (x)T ≤ 0}. (3.15)

Since ε̄, LgV (x)LgV (x)T are both ≥ 0, it can be verified that Kε̄ ⊆ K (the set obtained

from (3.3)).

3.3 Rapidly Exponentially Stabilizing Control Lyapunov

Functions

If we need stronger bounds of convergences (especially used for hybrid systems like bipedal

robots; more on this is discussed in Chapter 4), a rapidly exponentially stabilizing con-

trol Lyapunov function (RES-CLF) is constructed that stabilizes the output dynamics at a

rapidly exponential rate (see [28] for more details) through a user defined ε > 0.

Definition 26. The family of continuously differentiable functions Vε : Rn → R≥0 is a

rapidly exponentially stabilizing control Lyapunov function (RES-CLF) if there exist posi-

tive constants c1, c2, c3 > 0 such that for all 0 < ε < 1, x,

c1‖x‖2 ≤ Vε(x) ≤ c2

ε2
‖x‖2

inf
u∈U

[LfVε(x) + LgVε(x)u+
c3

ε
Vε(x)] ≤ 0. (3.16)
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Therefore, we can define a class of controllers Kε:

Kε(x) = {u ∈ U : LfVε(x) + LgVε(x)u+
γ

ε
Vε(x) ≤ 0}, (3.17)

which yields the set of control values that satisfies the desired convergence rate. We ac-

cordingly have the definition for RES-CLFs that are input to state stabilizing. We have

to use rapidly exponentially input to state stabilizing (Re-ISS)-Lyapunov functions as de-

fined in (2.16). Based on this formulation, we have the following definition for rapidly

exponentially input to state stabilizing control Lyapunov function (Re-ISS-CLF).

Definition 27. For the system (2.18), a RES-CLF, V : Rn → R≥0 (Definition 20), is a

rapidly exponentially input to state stable stabilizing control Lyapunov function (Re-ISS-

CLF), if it is satisfies the conditions of an Re-ISS-Lyapunov function (see 2.16). In other

words, a continuously differentiable function V : Rn → R≥0 is an e-ISS-CLF, if there exists

a set of admissible controls U ⊂ Rm, and c, c̄, c > 0, and ι ∈ K∞ such that

c‖x‖2 ≤ V (x) ≤ c̄‖x‖2

inf
u∈U

[LfV (x) + LgV (x)(u+ d)] ≤ −cV (x) + ι(‖d‖∞), ∀x, d. (3.18)

Similar to Lemma 8 we pick a subclass of controllers from RES-CLF in the following

Lemma.

Lemma 9. The continuously differentiable function Vε : Rn → R≥0 defined for c1, c2, c3 >

0 as

c1‖x‖2 ≤ Vε(x) ≤ c2

ε2
‖x‖2

inf
u∈U

[LfVε(x) + LgVε(x)u+
c3

ε
Vε(x) +

1

ε̄
LgVε(x)LgVε(x)T ] ≤ 0, (3.19)

is an Re-ISS-CLF ∀ 0 < ε < 1, ε̄ > 0.
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Figure 3.1: Venn diagram representation of the classes of controllers defined.

Proof. Proof of this Lemma is straightforward from (3.12), where α(|x|) needs to be simply

replaced with c3
ε
Vε(x).

Motivated by Lemma 7 we can create a subclass of RES-CLFs that are Re-ISS

Kε,ε̄(x) = {u ∈ U : LfV (x) + LgV (x)u+
c3

ε
Vε(x) +

1

ε̄
LgVε(x)LgVε(x)T ≤ 0}. (3.20)

Similar to (3.15), ε̄, LgV (x)LgV (x)T are both ≥ 0, it can be verified that Kε,ε̄ ⊆ Kε (the

set obtained from (3.17)). In fact, Kε,ε̄ ⊆ Kε̄ ⊆ K, and Kε ⊆ K. See Fig. 3.1.

To summarize, for affine systems of the form (2.18), we showed that we can create a

set of ISS controllers for the three types of classes: CLFs, ES-CLFs, RES-CLFs. We also

defined two subclasses mathematically, e-ISS-CLF (3.15), and Re-ISS-CLF (3.20), which

both yield e-ISS. The purpose of Re-ISS-CLF will be more clear in the context of hybrid

systems in Chapter 4.
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3.4 Extension of Artstein’s Theorem

We can make use of Artstein’s theorem [23], which states that existence of a smooth control

Lyapunov function implies smooth stabilizability, which can be extended to include ISS-

CLFs by using Lemma 4.

Lemma 10. For systems of the form (2.18), existence of a smooth stabilizing control Lya-

punov function implies the existence of a smooth input to state stabilizing control Lyapunov

function.

This, of course, can be extended to ES-CLFs and RES-CLFs and conclude that the

corresponding ISS versions of these CLFs can be easily computed. Lemma 10 can be used

to construct input to state stabilizing controllers, given a CLF. While constructing these

robust controllers are possible, major challenge lies in obtaining a Lyapunov function for

the given system. The most popular approach used is via feedback linearization (always

used in robotic systems). Given the outputs, we can linearize the dynamics and obtain a

Lyapunov function for the resulting linear system. More on this is explained in Chapter

6. If we pick only the outputs y then we can extend Lemma 10 to create input to output

stabilizing control Lyapunov functions (IOS-CLF).

3.5 Discrete Time Systems

Similar to continuous systems, we can define CLFs for discrete systems here. We will omit

the argument of the discrete time index i in this section, since, the inequalities presented

here are all independent of time.

Definition 28. For the system (2.20), a continuous function V : Rn → R≥0 is an asymp-

totically stabilizing control Lyapunov function (CLF), if there exists a set of admissible
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controls U, and α, ᾱ, α ∈ K∞ such that for all x

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

inf
u∈U

[V (f(x, u))− V (x) + α(|x|)] ≤ 0. (3.21)

We can also define a sub-class of CLFs that are input to state stable. In other words,

we define input to state stabilizing control Lyapunov functions (ISS-CLFs) for discrete

time systems of the form (2.20).

Definition 29. For the system (2.20), an asymptotically stabilizing CLF, V : Rn → R≥0

(Definition 28), is a weak input to state stable stabilizing control Lyapunov function

(weak-ISS-CLF), if it satisfies the conditions of a weak ISS-Lyapunov function. In other

words, a continuous function V : Rn → R≥0 is a weak-ISS-CLF, if there exists a set of ad-

missible controls U ⊂ Rm, a smooth invertible map g′ : Rn → Rm×m, and α, ᾱ, α, ι ∈ K∞

such that

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

inf
u∈U

[V (f(x, u+ g′(x)d))− V (x)] ≤ −α(|x|) + ‖d‖∞, ∀x, d. (3.22)

We therefore have the following Lemma, which is the extension of Artstein’s theorem

for discrete time systems.

Lemma 11. For systems of the form (2.20), existence of a smooth stabilizing control Lya-

punov function implies the existence of a smooth weak input to state stabilizing control

Lyapunov function.

Since weak ISS conditions are of less importance to us, and also since these conditions

are not a suitable reflection of the uncertainty effects observed in real systems, we will focus

more attention toward input to state stabilization of continuous time affine control systems
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only. The systems that are of interest to us are only those that yield strong ISS properties.

The next chapter, which discusses hybrid systems, will analyze a general hybrid system

and then study the class of systems where strong ISS properties can be realized.
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Part II

Hybrid Systems
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CHAPTER 4

HYBRID SYSTEMS

In this section, we will discuss a general hybrid model, and then discuss a class of hybrid

systems that also naturally model bipedal robots: systems with impulse effects. Informally,

a hybrid system is a sequence of continuous and discrete events. Formal definitions for

hybrid systems can be found in [41, 42, 12, 43, 44]. The continuous events are called the

flows, and the discrete events are called the jumps. A detailed account on robotic hybrid

system models will be given in Chapter 6.

4.1 Basic Definition

We will study here a general nonlinear hybrid system consisting of states x of dimension

n, and inputs u of dimension m. It will be assumed that the dimensions of the state and

the control inputs do not change. Since the disturbances d (also of dimension m) studied in

the thesis appear only along with the control inputs, the constant dimension of the control

inputs is mandatory. For example, for robotic hybrid systems, the number of actuators

remain the same irrespective of their behaviors. For systems with impulses, when the inputs

do not appear in the discrete events, we will assume constant dimension of the inputs only

in the continuous events.

Definition 30. A hybrid control system is defined to be the tuple:

HC = (Γ,D,S,U,∆,F), (4.1)

where each element in the setHC is described below.
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• The directed graph: Γ = (V,E) consisting of vertices and edges,

V = {v1, v2, . . . }, E = {e1, e2, . . . } ⊂ V× V. (4.2)

Fig. 4.1 denotes a directed graph consisting of the vertices (circles) and edges (ar-

rows). Therefore, if the edge, e1, denotes the arrow from v1 to v2, then e1 is the

ordered pair: e1 = (v1, v2). We denote the source and target vertices as source(e) =

v1, target(e) = v2. For a general case, we denote the ordered pair as

e = (source(e), target(e)).

• D = {Dv1 ,Dv2 , . . . } is the set of domains. Each domain Dv ⊂ Rn×Rm, is a manifold

with v ∈ V can be defined as the set of feasible states and admissible control inputs

for the hybrid system. There could be kinematic and dynamic constraints that could

limit the statespace. Note that all of the domains are assumed to have constant

dimensions.

• S = {Se1 ,Se2 , . . . } is the set of switching surfaces or guards, with each guard Se ⊂

Dsource(e), is an embedded submanifold with e ∈ E, representing the surface where

the switch over to the next domain happens. A domain can have multiple guards. So

the union of guards for each domain is denoted as Sv =
⋃
{e∈E|source(e)=v} Se.

• U = {Uv1 ,Uv2 , . . . ,Ue1 ,Ue2 , . . . } = {{Uv}v∈V, {Ue}e∈E}, where each U� ⊂ Rm is

the set of admissible control inputs. The set includes the control inputs for both the

continuous and the discrete dynamics. It is assumed that the dimensions of the inputs

do not change based on the domains or the guards. Given the set of admissible inputs,

we denote the canonical projection as πx : Dv → Rn, that maps from the domain to
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the corresponding states. It can be defined as

πx(Dv) = {x ∈ Rn : ∃u ∈ Uv ∪ (∪{e∈E|source(e)=v}Ue) s.t. (x, u) ∈ Dv}. (4.3)

• ∆ = {∆e1 ,∆e2 , . . . }, is the set of switching functions or reset maps or jump maps

from one domain to the next domain. Each reset map ∆e : Se → πx(Dtarget(e)), is

computed at the end of every continuous event. We have

x+ = ∆e(x
−, u), (x−, u) ∈ Se, x

+ ∈ πx(Dtarget(e)), e ∈ E. (4.4)

It is assumed that the reset maps are Lipschitz continuous in x.

• F = {fv1 , fv2 , . . . } provides the set of vector fields given by the equation

ẋ = fv(x, u), (x, u) ∈ Dv\Sv, v ∈ V. (4.5)

fv : Dv\Sv → Txπx(Dv\Sv) is assumed to be Lipschitz continuous in x.

If a feedback control law

u(x) =

 kv(x), (x, kv(x)) ∈ Dv\Sv, v ∈ V

ke(x), (x, ke(x)) ∈ Se, e ∈ E
, (4.6)

where each kv : πx(Dv\Sv) → Uv, ke : πx(Se) → Ue, is implemented, the hybrid control

systemHC reduces to a hybrid system

H = (Γ,Dcl, Scl,∆cl,Fcl), ∆cl = {∆cl
e }e∈E,Fcl = {f clv }v∈V, (4.7)

with the omission of U. Dcl = {πx(Dv)}v∈V,Scl = {πx(Se)}e∈E and each ∆cl
e (x) :=

∆e(x, ke(x)), f clv (x) := fv(x, kv(x)). By slight abuse of notations, we will remove the
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Figure 4.1: Graphical representation of hybrid systems. The edge set E represents the
discrete transitions from one domain to another. It should be noted that the designation of
the edges is not restricted by the vertices. For example, e2 is the edge from v2 to v1.

superscript cl in some of the equations for convenience. The space of the sets defined can

be easily distinguished based on the controllers and the model considered.

A system with a single domain and single reset map is called a simple hybrid control

system. It can be represented in the form of (4.1) with the omission of the directed graph

Γ:

SHC = (D,S,U,∆,F). (4.8)

A pictorial representation is given in Fig. 4.2. A wide variety of hybrid systems can be de-

fined in the form of (4.1) such as mechanical systems, networked control systems, switch-

ing power systems, embedded systems and so on. This representation is derived from

category theory used in [12]. A pictorial representation of the hybrid system is shown in

Fig. 4.1. Fig. 4.3 shows a pictorial representation for different domains of a dancing model

Figure 4.2: Figure showing a simple hybrid system with affine controls in the continuous
dynamics.
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Figure 4.3: Representation of different possible domains for bipedal robotic dancing of
AMBER2: double heel lift, front toe back heel lift, underactuated, front toe lift, front heel
lift, flat footed, swing, back heel lift. There are eight possible vertices.

for AMBER2. Since we are specifically interested in affine systems, we will eventually

deviate from the vector fields of the form (4.5). We will show basic stability and input to

state stability properties for a general hybrid system, and then shift our focus on systems

that are more interesting to us: systems with impulse effects.

For the hybrid control system (4.1), we substitute the control laws defined by (4.6) and

the resulting closed loop dynamics are given by

f clv (x) = fv(x, kv(x)), (x, kv(x)) ∈ Dv\Sv, v ∈ V

∆cl
e (x−) = ∆e(x

−, ke(x
−)), (x−, ke(x

−)) ∈ Se, e ∈ E. (4.9)

Evolution of this closed loop dynamics over time is of interest to us. This evolution is

called an execution of the hybrid systemH (4.7). The definition of execution is taken from

[45, 46, 47].

Execution. The execution of the hybrid system,H, is a tuple

(Ξ, I, ρ,C), (4.10)
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• Ξ ⊆ N0 is the indexing set.

• I = {Ii}i∈Ξ is the collection of intervals, e.g., Ii = [ti, ti+1] if i, i+1 ∈ Ξ and IN−1 =

[tN−1, tN] or [tN−1, tN) or [tN−1,∞) if |Ξ| = N, N is finite. Here ti, ti+1, tN ∈ R≥0

and ti ≤ ti+1.

• ρ : Ξ→ V is a map such that for all i, i+ 1 ∈ Ξ, (ρ(i), ρ(i+ 1)) ∈ E.

• C is the set of trajectories, {Ci}i∈Ξ, where each Ci : R≥0 → πx(Dρ(i)). They must

satisfy Ċi(t) = f clρ(i)(Ci(t)) on Ii along with some consistency conditions for all

i, i+ 1 ∈ Ξ:

– Ci(ti+1) ∈ πx(S(ρ(i),ρ(i+1))).

– ∆cl
(ρ(i),ρ(i+1))(Ci(ti+1)) = Ci+1(ti+1).

– ti+1 = min{t ∈ Ii : Ci(t) ∈ πx(S(ρ(i),ρ(i+1)))}.

The closed loop dynamics f clρ(i),∆
cl
(ρ(i),ρ(i+1)) are obtained from (4.9).

The execution is finite, if Ξ ⊂ N0 and all the intervals are closed Ii = [ti, ti+1] with

tN <∞, it is infinite if Ξ = N0 or if
∑

i∈Ξ ti+1− ti =∞. The thesis will not discuss finite

executions, zeno executions and also consecutive jumps. Therefore, if Ξ ⊂ N0, then we

have that tN = ∞ =⇒ IN−1 = [tN−1, tN), and if Ξ = N0, we have that limi→∞ ti = ∞.

Consecutive jumps are excluded for satisfying minimum dwell time conditions (required

in 4.4.2). Therefore ∃T > 0 such that ti+1 − ti ≥ T , for all i ∈ Ξ.

Hybrid time domains. We can also define a hybrid time domain that is the union of the

intervals, given by T :=
⋃
i∈Ξ(Ii, i). Therefore, the execution of a hybrid system can

also be given in terms of solutions that are functions of hybrid time domain (see [48] for

a detailed analysis on hybrid time domains). The hybrid arc is nothing but the trajectory

Ci(t), where (t, i) ∈ T. The hybrid arc is the solution in the hybrid time domain (t, i) ∈ T.
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The hybrid control input for each i ∈ Ξ can be obtained as

ui(t) =

 kρ(i)(Ci(t)), t ∈ [ti, ti+1)

k(ρ(i),ρ(i+1))(Ci(t)), t = ti+1

i, i+ 1 ∈ Ξ, (4.11)

and if Ξ ⊂ N0

uN−1(t) = kρ(N−1)(CN−1(t)), t ∈ [tN−1, tN). (4.12)

The hybrid control input is a function of the hybrid time domain, and for each i ∈ Ξ

the mapping from t to ui(t) = u(t, i) is Lebesgue measurable, locally essentially bounded

on the interval {t : (t, i) ∈ T}. It must be noted that there is a natural ordering of the

hybrid intervals in the hybrid time domain, i.e., i′ ≤ i =⇒ ti′ ≤ ti. Therefore, we have

the ordering for the hybrid intervals (t′, i′) ≤ (t, i), and (t, i)→∞ can be defined as either

t → ∞ or i → ∞ or both t, i → ∞. If Ξ is a proper subset of N0, (t, i) → ∞ implies

t → ∞. If Ξ = N0, (t, i) → ∞ implies i → ∞. For periodic orbits (t, i) → ∞ implies

t → ∞, i → ∞. Since zeno executions and chattering phenomena (also treated as zeno

[45]) are not discussed, the case when limi→∞ ti < ∞, for Ξ = N0, is not included in the

thesis.

4.2 Stability and Stabilizability of Hybrid Systems

There is a significant amount of work done on the problem of stabilizing hybrid systems

and switched systems. Some of the work include [21, 17, 18, 49, 22]. We will define basic

notions of stability and then introduce the notion of stabilizability. Execution of the hybrid

system yields the set of trajectories, C. We will denote xi := Ci for ease of notation.

Therefore, xi(t) = Ci(t), (t, i) ∈ T. Also denote x(0) := x0(t0), where t0 = 0.

Definition 31. The origin, x = 0, of the hybrid system, H, is stable if ∀ δ1 > 0, ∃ δ2 > 0

such that |xi(t)| ≤ δ1, ∀(t, i) ∈ T, ∀ |x(0)| ≤ δ2.
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Definition 32. The origin, x = 0, of the hybrid system, H, is asymptotically stable, if it is

stable and lim(t,i)→∞ |xi(t)| = 0.

Definition 33. The origin, x = 0, of the hybrid system, H, is exponentially stable, if there

are constants δ1, δ2 > 0 such that |xi(t)| ≤ δ1e
−δ2(t+i)|x(0)|.

For the hybrid system of the form (4.1), we have the following definition of a Lyapunov

function.

Definition 34. A continuously differentiable function V : Rn → R≥0 is a Lyapunov func-

tion for the hybrid systemH, (4.7), if there exist α, ᾱ, α ∈ K∞ such that for all v, e, x

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

Lfclv V (x) + α(|x|) ≤ 0, if (x, kv(x)) ∈ Dv\Sv

V (∆cl
e (x))− V (x) + α(|x|) ≤ 0, if (x, ke(x)) ∈ Se. (4.13)

Converse Lyapunov theorems are valid even for hybrid systems under mild regularity

conditions as given by [50, 51, 25, 52].

Lemma 12. For hybrid systems of the form (4.7), asymptotic stability ⇐⇒ existence of a

Lyapunov function.

The notion of stabilizability for hybrid systems in general has been dealt with in [17,

18, 16, 21, 22]. Note that stabilizability in this context means asymptotic stabilizability.

The general stabilizability (Lyapunov stability criterion) notion presented in the thesis will

be always asymptotic stability.

Definition 35. The origin x = 0 of the hybrid systemHC is stabilizable if there are control

laws kv : Rn → Uv, v ∈ V, ke : Rn → Ue, e ∈ E such that the closed loop hybrid system

H is asymptotically stable.
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Similar definition can be obtained for exponential stability of hybrid systems. Since the

interest is more on the existence of control Lyapunov functions for hybrid systemsHC, we

will utilize the definitions obtained from [25]. Define

πu(x,Dv) := {u ∈ Uv ∪{e∈E|source(e)=v} Ue|(x, u) ∈ Dv}. (4.14)

We therefore have the set valued mappings πv
u : Rn ⇒ Uv, πe

u : Rn ⇒ Ue as

πv
u(x) := πu(x,Dv\Sv), πe

u(x) := πu(x, Se). (4.15)

We have the following definition of CLFs for hybrid systems.

Definition 36. A continuously differentiable function V : Rn → R≥0 is a control Lyapunov

function for the hybrid control system HC if there exist α, ᾱ, α ∈ K∞ such that for all

v ∈ V, e ∈ E and for all x

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

inf
u∈πv

u(x)
[LfvV (x, u) + α(|x|)] ≤ 0, if (x, u) ∈ Dv\Sv

inf
u∈πe

u(x)
[V (∆e(x, u))− V (x) + α(|x|)] ≤ 0, if (x, u) ∈ Se (4.16)

Given the control Lyapunov function for the hybrid system, it is imperative that the

hybrid control system is stabilizable. Based on these definitions, we therefore have the

following Lemma obtained from [25].

Lemma 13. For hybrid systems of the form (4.1), existence of a smooth control Lyapunov

function ⇐⇒ stabilizability.

The Lemma is, of course, Artstein’s theorem [23] applied for hybrid systems. The proof

of this Lemma is given in [25], wherein the regularity conditions are applied.
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4.3 Input to State Stability of Hybrid Systems

Input to state stability for hybrid systems is defined similar to continuous systems, with the

norm on the disturbance inputs being the maximum value of the suprema of the inputs of

individual events,

‖d‖∞ = sup
i∈Ξ
{max{ ess sup

t∈[ti−1,ti)

|d(t)|, |d(ti)|}}. (4.17)

Therefore d takes values in the space of all Lebesgue measurable functions d ∈ Lm∞.

With this norm, all the definitions from Definition 6 to 14 are valid with minor modifi-

cations. We define the KLL function as the function with three arguments β(|x|, t, i),

where β(|x|, t, i) ∈ KL for a fixed i and β(|x|, t, i) ∈ L for a fixed |x|, t. Assume that the

control law given by (4.6) is a stabilizing control law for the hybrid control systemHC, we

are interested in studying the stability properties for control inputs of the form

u(x, d) =

 kv(x) + g′v(x)d, v ∈ V

ke(x) + g′e(x)d, e ∈ E
, (4.18)

where g′ : Rn → Rm×m is a smooth invertible matrix. Based on this control law, we have

a new hybrid control system

HCd = (Γ,Dd,Sd,Ud,∆d,Fd)

Dd = {Dd
v}v∈V

Sd = {Sde}e∈E

Ud = {{Ud
v}v∈V, {Ud

e}e∈E}

∆d = {∆d
e}e∈E

Fd = {fdv}v∈V, (4.19)
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where each Ud
� ⊂ Lm∞ is the set of Lebesgue measurable disturbance inputs. The domains

and the guards are given by Dd
v ⊂ Rn × Lm∞, Sde ⊂ Dd

source(e), ∆d is the set of switching

functions specifically described as

∆d
e(x−, d) = ∆e(x

−, ke(x
−) + g′e(x

−)d), (x−, d) ∈ Se, (4.20)

and Fd provides the set of vector fields that yield the continuous dynamics

ẋ = fdv (x, d) = fv(x, kv(x) + g′v(x)d), (x, d) ∈ Dv\Sv. (4.21)

Note that the disturbance d has dependency on the states of the system. This requirement

is mandatory to avoid cases not included in the model. For example, for bipedal robots,

slipping conditions are not included and the control input applied should be in the domain

of admissibility. We therefore have the following sets

Sde := {(x, d) ∈ Rn × Lm∞|(x, ke(x) + g′e(x)d) ∈ Se}, e ∈ E

Sdv := ∪{e∈E|source(e)=v}Sde

Dd
v := {(x, d) ∈ Rn × Lm∞|(x, kv(x) + g′v(x)d) ∈ Dv\Sv} ∪ Sdv, v ∈ V, (4.22)

where kv, ke are obtained after applying a feedback controller (see (4.18)) that also satisfy

(x, kv(x)) ∈ Dv\Sv, (x, ke(x)) ∈ Se.

Therefore, for hybrid control systems of the form (4.19), we have the following def-

initions of input to state stability. Let x0 := x(0) = x0(t0). Similar to KL functions,

there are also KLL functions that are utilized here for defining ISS. If β ∈ KLL, then

β(|x|, t, i)→ 0 as i→ 0.

Definition 37. The system HCd is input to state stable w.r.t. the input d if there exist
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β ∈ KLL, ι ∈ K∞ such that

|xi(t, x0, d)| ≤ β(|x0|, t, i) + ι(‖d‖∞), ∀x0,∀(t, i) ∈ T,∀d. (4.23)

Definition 38. The systemHCd is exponential input to state stable w.r.t. the input d if there

exist β ∈ KLL, ι ∈ K∞, and λ > 0 such that

|xi(t, x0, d)| ≤ β(|x0|, t, i)e−λ(t+i) + ι(‖d‖∞), ∀x0,∀(t, i) ∈ T,∀d. (4.24)

Definition 39. A continuously differentiable function V : Rn → R≥0 is an ISS-Lyapunov

function for the hybrid control system HCd if there exist α, ᾱ, ι ∈ K∞ such that for all

v ∈ V, e ∈ E and for all x, d

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

LfdvV (x, d) ≤ −α(|x|) + ι(‖d‖∞), if (x, d) ∈ Dd
v\Sdv

V (∆d
e(x, d))− V (x) ≤ −α(|x|) + ι(‖d‖∞), if (x, d) ∈ Sde . (4.25)

We have the following definition of an input to state stabilizing control Lyapunov func-

tion for hybrid systems. For more details on the definition of ISS-CLFs for hybrid systems,

see [53]. Similar to the weak ISSability notion introduced in Chapters 2, 3, we will study a

weak form of ISS-CLF here.

Definition 40. A continuously differentiable function V : Rn → R≥0 is a weak input to

state stabilizing control Lyapunov function (weak-ISS-CLF) for the hybrid control system

HC if there exist α, ᾱ, α, ι ∈ K∞, and an invertible g′ : Rn → Rm×m such that for all
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v ∈ V, e ∈ E and for all x, d

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

inf
u∈πv

u(x)
[LfvV (x, u+ g′v(x)d) + α(|x|)] ≤ ι(‖d‖∞), if (x, d) ∈ Dd

v\Sdv

inf
u∈πe

u(x)
[V (∆f

e (x, u+ g′e(x)d))− V (x) + α(|x|)] ≤ ι(‖d‖∞), if (x, d) ∈ Sde . (4.26)

Note that the set valued maps πv
u, π

e
u are obtained from (4.15) which always satisfy

(x, u) ∈ Dv. The allowable disturbance is restricted by the control law (see (4.22)). A

more detailed discussion on ISS notion for hybrid systems can be found in [15, 54, 55, 56].

Definition 41. The hybrid control system HC, (4.1), is weak input to state stabilizable, if

there is a control law of the form (4.6), such that the resulting hybrid control system, HCd

(4.19) is input to state stable. The system is strong input to state stabilizable, if g′ ≡ 1m×m.

We have the following Lemma that is obtained from [15].

Lemma 14. For hybrid control systems of the form (4.1), smooth stabilizability implies

smooth weak input to state stabilizability.

It can be observed that Lemma 14 only yields input to state stability for controllers

of the form (4.18) for both discrete and continuous time systems. This can be indeed re-

framed in the form of CLFs.

Lemma 15. For hybrid control systems of the form (4.1), existence of a smooth CLF implies

the existence of a smooth weak-ISS-CLF.

Proof. By Lemma 13, CLF =⇒ stabilizability. By Lemma 14 stabilizability =⇒ input

to state stabilizability. Therefore given any stabilizing controller, we can always find an

input to state stabilizing controller k�(x) ∈ U�, and an invertible g′�(x) ∈ Rm×m such
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that for the control law (4.18), the new resulting hybrid control system (4.19) is input to

state stable w.r.t. the disturbance d. Therefore, for each controller belonging to the set

defined by the CLFs, an ISSable (input to state stabilizable) controller can be picked, with

the resulting CLF satisfying the conditions of an ISS-Lyapunov function.

As mentioned in 2.3, we are more interested in strong input to state stability conditions

in hybrid systems. The weak ISS conditions become strong if the hybrid system is globally

Lipschitz with respect to the control input u. With the interest of including only those

classes of systems that satisfy strong ISS properties, we analyze continuous dynamics that

are affine in controls. Therefore, we have a hybrid control system consisting of the tuple

AHC = (Γ,D,S,U,∆fg,FG), (4.27)

where now all the notations have the usual definitions except ∆fg, FG, which is represented

as follows FG = {(fv1 , gv1), (fv2 , gv2), . . . } provides the set of vector fields given by the

equation

ẋ = fv(x) + gv(x)u, (x, u) ∈ Dv\Sv, v ∈ V. (4.28)

The switching functions are also redefined to have affinity properties, but has no significant

advantage over the non-affine representation. ∆fg = {∆fg
e1
,∆fg

e2
, . . . }, where each ∆fg

ei
=

(∆f
ei
,∆g

ei
) is the set of switching functions or reset maps from one domain to the next

domain. We have

x+ = ∆f
e (x−) + ∆g

e(x−)u, (x−, u) ∈ Se, e ∈ E. (4.29)

The hybrid control system representation (4.27) is not unique, and can be done in the form
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of equations as

AHC =



ẋ = fv1(x) + gv1(x)u, (x, u) ∈ Dv1\Sv1 ,

ẋ = fv2(x) + gv2(x)u, (x, u) ∈ Dv2\Sv2 ,

ẋ = fv3(x) + gv3(x)u, (x, u) ∈ Dv3\Sv3 ,

...

x+ = ∆f
e1

(x−) + ∆g
e1

(x−)u, (x−, u) ∈ Se1 ,

x+ = ∆f
e2

(x−) + ∆g
e2

(x−)u, (x−, u) ∈ Se2 ,

x+ = ∆f
e3

(x−) + ∆g
e3

(x−)u, (x−, u) ∈ Se3 ,

...

(4.30)

(4.30) is an alternate form of an affine hybrid control system, where the controls are affine

in both continuous and discrete dynamics.

4.4 Systems with Impulse Effects

If we include only those hybrid systems with affine controls in the continuous dynamics,

and no controls in the discrete dynamics, then we have a special class of hybrid systems.

These types of systems are typical of bipedal robots, where the discrete dynamics is the

impact dynamics. In other words, the discrete dynamics cannot be controlled (which is a

much harder problem to solve). These systems are generally called systems with impulsive

effects or systems with impulse effects or even systems with impulses. Hybrid mechanical

systems can be modeled in this fashion.

This class of systems can be modeled as a tuple:

IHC = (Γ,D,S,U,∆,FG), (4.31)

which is the redefinition of (4.30). The jump map (or the reset map) ∆ is redefined to not
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have control inputs as arguments:

x+ = ∆e(x
−), x− ∈ πx(Se), x

+ ∈ πx(Dtarget(e)), e ∈ E, (4.32)

(4.31) can also be represented in the form of equations as

IHC =



ẋ = fv1(x) + gv1(x)u, (x, u) ∈ Dv1\Sv1 ,

ẋ = fv2(x) + gv2(x)u, (x, u) ∈ Dv2\Sv2 ,

ẋ = fv3(x) + gv3(x)u, (x, u) ∈ Dv3\Sv3 ,

...

x+ = ∆e1(x
−), x− ∈ πx(Se1),

x+ = ∆e2(x
−), x− ∈ πx(Se2),

x+ = ∆e3(x
−), x− ∈ πx(Se3),

...

(4.33)

More details on the definition of systems with impulse effects can be found in [57]. Based

on constructions of converse Lyapunov theorems for hybrid systems, we know that if there

is a closed loop control law u(x) = kv(x), (x, kv(x)) ∈ Dv\Sv, v ∈ V that stabilizes the

new hybrid control system (4.31), then there is a Lyapunov function of the form

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

LfvV (x) + LgvV (x)kv(x) + α(|x|) ≤ 0, if (x, kv(x)) ∈ Dv\Sv

V (∆e(x))− V (x) + α(|x|) ≤ 0, if x ∈ πx(Se), (4.34)

for all e, v, x. We can also study control inputs with disturbances: u(x) = kv(x) + d,

(x, kv(x) + d) ∈ Dv\Sv. We therefore, have the resulting hybrid control system with the
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input being the disturbances:

IHCd = (Γ,Dd,Sd,Ud,∆d,FGd), (4.35)

where the notations are similar to the derivations used for (4.19) with the only difference

being the omission of the control input for the reset map. The stabilizing controllers kv for

the continuous dynamics can be obtained via CLFs.

Definition 42. A continuously differentiable function V : Rn → R≥0 is a control Lyapunov

function for the hybrid control system IHC if there exist α, ᾱ, α ∈ K∞ such that for all for

all x, v ∈ V, e ∈ E

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

inf
u∈πv

u(x)
[LfvV (x) + LgvV (x)u+ α(|x|)] ≤ 0, if (x, u) ∈ Dv\Sv

V (∆e(x))− V (x) + α(|x|) ≤ 0, if x ∈ πx(Se). (4.36)

The set valued map, compared to (4.15), has a slightly different formulation: πv
u(x) :=

{u ∈ Uv|(x, u) ∈ Dv\Sv}. A similar definition for ISS-CLFs is given below. See [53] for

more details and for a more generic definition of ISS-CLFs for hybrid systems.

Definition 43. A continuously differentiable function V : Rn → R≥0 is an input to state

stabilizing control Lyapunov function for the hybrid control system IHC if there exist

α, ᾱ, α, ι ∈ K∞ such that ∀ v, e, x, d

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

inf
u∈πv

u(x)
[LfvV (x) + LgvV (x)u+ LgvV (x)d+ α(|x|)] ≤ ι(‖d‖∞), if (x, d) ∈ Dd

v\Sdv

V (∆e(x))− V (x) + α(|x|) ≤ 0, if x ∈ πx(Sde). (4.37)
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We can also study exponentially stabilizing CLFs for these types of systems in the

following manner.

Definition 44. A continuously differentiable function V : Rn → R≥0 is an exponen-

tially stabilizing control Lyapunov function for the hybrid control system IHC if there

exist c, c̄, c > 0 such that for all for all v, e, x

c‖x‖2 ≤ V (x) ≤ c̄‖x‖2

inf
u∈πv

u(x)
[LfvV (x) + LgvV (x)u+ cV (x)] ≤ 0, if (x, u) ∈ Dv\Sv

V (∆e(x))− V (x) + e−cV (x) ≤ 0, if x ∈ πx(Se). (4.38)

A similar definition for e-ISS-CLFs is given below.

Definition 45. A continuously differentiable function V : Rn → R≥0 is an exponential

input to state stabilizing control Lyapunov function for the hybrid control system IHC if

there exist c, c̄, c > 0 such that ∀ v, e, x, d

c‖x‖2 ≤ V (x) ≤ c̄‖x‖2

inf
u∈πv

u(x)
[LfvV (x) + LgvV (x)u+ LgvV (x)d+ cV (x)] ≤ ι(‖d‖∞), if (x, d) ∈ Dd

v\Sdv

V (∆e(x))− V (x) + e−cV (x) ≤ 0, if x ∈ πx(Sde). (4.39)

We have the following Lemma, which guarantees existence of ISS-CLFs for hybrid

systems.

Lemma 16. For systems of the form IHC, existence of a CLF of the form (4.36) implies

the existence of an ISS-CLF of the form (4.37).

Proof. Based on the constructions of CLF obtained from (4.36), we pick a CLF V that
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satisfies the following form for all v, e, x:

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

inf
u∈πv

u(x)
[LfvV (x) + LgvV (x)u+ LgvV (x)LgvV (x)T + α(|x|)] ≤ 0, if (x, u) ∈ Dv\Sv

V (∆e(x))− V (x) + α(|x|) ≤ 0, if x ∈ πx(Se), (4.40)

for some α, ᾱ, α ∈ K∞. It can be verified that (4.40) is indeed a CLF. For a control law of

this type, we know that

V̇ (x, u+ d) = LfvV (x) + LgvV (x)u+ LgvV (x)d

≤ −α(|x|)− LgvV (x)LgvV (x)T + LgvV (x)d, (4.41)

and based on results from (3.12), we have

LfvV (x) + LgvV (x)u+ LgvV (x)d ≤ −α(|x|) + ε̄
‖d‖2

∞
4

, (4.42)

which satisfies the conditions of ISS-CLF for hybrid systems.

Due to the difficulty in obtaining the common CLFs for hybrid systems in general,

we will study CLFs that render exponential stability of the continuous dynamics. As was

shown in [28], RES-CLFs (of the form (3.16)) also render exponential stability of the entire

hybrid system, by just rapidly exponentially stabilizing the continuous dynamics. Input to

state stabilizing controllers inspired by these RES-CLFs will be discussed now.

4.4.1 Exponentially Stabilizing CLFs of the Continuous Dynamics

Given a stable hybrid system, converse Lyapunov theorems guarantee existence of Lya-

punov functions (see [51, 58]) that are decreasing along solutions of the system. Similar

results for control Lyapunov functions can also be easily established (see [25]). Existence
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of these functions are a powerful result, but not enough for finding Lyapunov functions in

general. On the other hand, it can be shown that it is possible to stabilize these classes of

hybrid systems by just stabilizing the continuous dynamics under certain conditions. This

is based on the work on RES-CLF based controllers from [28]. Some of the conditions

that are included are hybrid invariance, i.e., for all e ∈ E,∆e(0) = 0, average dwell time

(explained further in (4.46)). These types of controllers exponentially stabilize the continu-

ous dynamics. In other words, the systems included are the classes that have exponentially

stabilizable continuous dynamics. These kinds of systems naturally model hybrid mechan-

ical systems like bipedal robots, which are feedback linearizable under certain conditions

(partially feedback linearizable systems are studied in Chapter 5). Given the hybrid system,

IHC (4.31), we use the stabilizing control law (obtained from (3.3))

u(x) = kv(x) ∈ Kv(x), (x, kv(x)) ∈ Dv\Sv, v ∈ V, (4.43)

for the continuous dynamics. Kv is the set of controllers obtained from (3.3) that is domain

dependent:

Kv(x) = {u ∈ πv
u(x)|LfvV (x) + LgvV (x)u+ cV (x) ≤ 0}, v ∈ Dv. (4.44)

Applying the control law (4.43) yields the closed loop hybrid system: IH = (Γ,D,S,∆,Fk).

Fk = {fv1 + gv1kv1 , fv2 + gv2kv2 , . . . }.

We have the result from [54, 55, 59, 60], which shows that for systems of the form

(4.31), e-ISS of the continuous dynamics with average dwell time implies ISS of the entire

system. We will define the dwell time condition as follows. Let N(s1, s2) denote the

number of impulse times in the semi-open interval [s1, s2). Therefore, if i, i+1, . . . , i+j ∈

Ξ is the indexing, such that ti, ti+1, . . . , ti+j ∈ [s1, s2), then N(s1, s2) = j. With this

number, we can define a candidate e-ISS Lyapunov function for systems with impulses in

the following manner:
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Definition 46. A continuously differentiable function V : Rn → R≥0 is a candidate expo-

nential ISS-Lyapunov function for the hybrid system IH if there exist c, c̄, c1, c2 > 0, and

ι ∈ K∞ such that ∀ v, e, x, d

c‖x‖2 ≤ V (x) ≤ c̄‖x‖2

V̇ (x, d) ≤ −c1V (x) + ι(‖d‖∞), if (x, d) ∈ Dd
v\Sdv

V (∆e(x)) ≤ ec2V (x) + ι(‖d‖∞), if x ∈ πx(Sde). (4.45)

We have the following Lemma that is obtained from [59] and reformulated to correctly

represent the systems that are of interest to us, i.e., stabilizing continuous dynamics but

destabilizing impulse effects. This Lyapunov function is a suitable candidate for represent-

ing the dynamics of (4.31).

Lemma 17. Let V be a candidate e-ISS-Lyapunov function for IH with c > 0 specifying

the convergence rate. Then for arbitrary constants a1, a2 > 0, let the set of impulsive time

sequences {ti}i∈Ξ satisfy

c2N(s1, s2) + (c1 + a1)(s1 − s2) ≤ a2 ∀s2 ≥ s1 ≥ t0. (4.46)

Then the system (4.31) is ISS.

Proof of the above Lemma is found in [59]. It is important to note that the expression

for the number of impulse times can be simplified as

N(s1, s2) ≤ c1 + a1

c2

(s2 − s1) + a2, (4.47)

which shows a linear relationship between the time interval and the number of discrete

transitions. This is called the average-dwell-time (ADT), which was first introduced in

[61].
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We can now introduce the main contribution that establishes the existence of an input

to state stabilizing CLF given the stabilizing CLF.

Theorem 1. If there exists an ES-CLF for the continuous dynamics that exponentially sta-

bilizes the hybrid control system, IHC (4.31), and if the ADT condition (4.46) is satisfied,

then there exists an e-ISS-CLF for the continuous dynamics that input to state stabilizes

this hybrid control system.

Proof. Similar to the construction of e-ISS-CLFs for continuous systems (3.9), we con-

struct the ISS based controllers based on the constructions from CLF. Therefore, given the

CLF for the continuous dynamics, we have the e-ISS-CLF from (3.14):

c‖x‖2 ≤ V (x) ≤ c̄‖x‖2 (4.48)

inf
u∈πv

u(x)
[LfvV (x) + LgvV (x)u+ cV (x) +

1

ε̄
LgvV (x)LgvV (x)T ] ≤ 0, (x, u) ∈ Dv\Sv,

for each v ∈ V with the constants c, c̄, c having the usual meaning from (3.14). We know

that this equation satisfies the ISS-Lyapunov function inequality for all d for the continu-

ous dynamics. Therefore assuming that the impulse maps are Lipschitz, we can have the

following two inequalities:

V̇ (x, d) ≤ −cV (x) + ι(‖d‖∞), if (x, d) ∈ Dd
v\Sdv

V (∆e(x)) ≤ c̄

c
L2

∆V (x), if x ∈ πx(Sde), (4.49)

which is in the form given by (4.45). L∆ is the maximum of the Lipschitz constants of all

the impact maps. It is assumed that ∆e(0) = 0. The average dwell time condition (4.46)

can be used by substituting for c1 = c and ec2 = c̄
c
L2

∆. Satisfying this condition yields

ISS.

Note that Theorem 1 requires the ADT conditions to be satisfied to yield sufficient

conditions that results in ISS. An alternative is also to use RES-CLFs (from (3.16)) and use
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the user defined ε > 0 to manually adjust the ADT conditions to yield both stabilization

and input to state stabilization results.

Non-hybrid invariance conditions. Assuming ∆e(0) 6= 0. We can rewrite the impact

equations

‖∆e(x)−∆e(0) + ∆e(0)‖ ≤ L∆‖x‖+ ‖∆e(0)‖. (4.50)

We therefore have

V (∆e(x)) ≤ c̄

c
L2

∆V (x) + 2L∆‖x‖‖∆e(0)‖+ ‖∆e(0)‖2, x ∈ πx(Se), (4.51)

The last two terms can be termed the disturbance input that appears in the impact dynamics.

Therefore, the inequality for the Lyapunov candidate (4.49) will take the following form

V̇ (x, d) ≤ −cV (x) + ι(‖d‖∞), if (x, d) ∈ Dd
v\Sdv

V (∆e(x)) ≤ c̄

c
L2

∆V (x) + ‖di‖∞, if x ∈ πx(Sde), (4.52)

where di = 2L∆‖x‖‖∆e(0)‖ + ‖∆e(0)‖2. As was shown in [54], hybrid systems with

the dynamics of this type can also exhibit ISS under the bounded disturbances d, di. The

boundedness assumption is reasonable locally.

4.4.2 Rapidly Exponential Input to State Stability and Minimum Dwell Time

Exponential stability conditions for these classes of hybrid systems can be realized by the

choice of appropriate controllers. We analyze stabilizing controllers that rapidly exponen-

tially stabilize the continuous dynamics. The advantage is with the increase in convergence

rate, the destabilizing affect of discrete dynamics gets minimized under a hybrid invariance,

and the ADT condition (see (4.46)) can be automatically satisfied. We know the discrete

map is locally Lipschitz in the states, i.e., ‖∆e(x) − ∆e(y)‖ ≤ L∆e‖x − y‖. Lipschitz
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continuity and hybrid invariance yields ‖∆e(x)‖ ≤ L∆e‖x‖. Let Ξ = N0. Therefore by

applying the control law

u(x) = kv,ε(x) ∈ Kv,ε(x), (x, kv,ε(x)) ∈ Dv\Sv, v ∈ V, (4.53)

we obtain the RES-CLF for the continuous dynamics, Vε : Rn → R≥0, of the form given

by (3.16). Kv,ε is obtained from (3.17):

Kv,ε(x) = {u ∈ πv
u(x)|LfvV (x) + LgvV (x)u+ cV (x) ≤ 0}, v ∈ Dv\Sv. (4.54)

Applying this controller results in the closed loop hybrid system: IHε = (Γ,D,S,∆,Fε).

Fε = {fv1 + gv1kv1,ε, fv2 + gv2kv2,ε, . . . }. By slight abuse of notations again, we denote

the trajectories (or flow) of the system as xi(t) = Ci(t) (from the execution (4.10) of this

closed loop hybrid system).

Vε(xi+1(ti+1)) = Vε(∆(ρ(i),ρ(i+1))(xi(ti+1))) ≤ c2

ε
L2

∆‖xi(ti+1)‖2 ≤ c2

εc1

L2
∆Vε(xi(ti+1))

Vε(xi(ti+1)) ≤ e−
c3
ε

(ti+1−ti)Vε(xi(ti))

=⇒ Vε(xi+1(ti+1)) ≤ c2

εc1

L2
∆e
− c3
ε

(ti+1−ti)Vε(xi(ti)). (4.55)

L∆ is the maximum of the Lipschitz constants of all the jump maps of the hybrid system.

If there is a finite T > 0 s.t. ti+1 − ti ≥ T , ∀i ∈ Ξ, we know that Vε → 0, as ε → 0. We

have the following Lemma, which shows that stability of the hybrid system can be realized

via RES-CLFs (3.17).

Lemma 18. Let the hybrid control system IHC be of the form (4.31). For all classes of

Lipschitz continuous feedback, u(x) = kv,ε ∈ Kε(x), if the minimum dwell time T for the

continuous dynamics is nonzero, i.e., ti+1− ti ≥ T > 0,∀i ∈ Ξ, and if ∆e(0) = 0,∀e ∈ E,

then for a sufficiently small ε > 0, the hybrid system IHε, is exponentially stable.
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Proof. Proof is straightforward from (4.55). Since ti+1 − ti ≥ T > 0,∀i ∈ Ξ, we have

Vε(xi+1(ti+1)) ≤ c2

εc1

L2
∆e
− c3
ε
TVε(xi(ti)), ∀i ∈ Ξ. (4.56)

Let ε be small enough such that c2
εc1
L2

∆e
− c3
ε
T < 1 (a contraction). Therefore, we have

Vε(xi(ti))→ 0 as (t, i)→∞, and x→ 0 as Vε → 0.

This minimum dwell time assumption was also used to prove stabilizability of linear

switched systems in [14]. Given that a hybrid system is stabilizable, the interest is now

refocused on the input to state stability property.

Given the hybrid system, IHC, we use the control law from (3.20) that input to state

stabilizes the continuous dynamics. We have

Kv,ε,ε̄(x) = {u ∈ πv
u(x)|LfvV (x) + LgvV (x)u+

1

ε̄
LgvV (x)LgvV (x)T +

c

ε
V (x) ≤ 0},

u(x) = kv,ε,ε̄(x) ∈ Kv,ε,ε̄(x), (x, kv,ε,ε̄(x)) ∈ Dv\Sv, v ∈ V. (4.57)

It can be shown that controllers from (4.57) yield exponential input to state stability for

hybrid systems IHC.

Theorem 2. Given the RES-CLF of the continuous dynamics, u(x) = kv,ε(x) ∈ Kv,ε(x)

(4.53), that exponentially stabilizes the hybrid control system (4.31), then the Re-ISS-CLF

of the continuous dynamics, u(x) = kv,ε,ε̄ ∈ Kv,ε,ε̄(x) (4.57), exponentially input to state

stabilizes the hybrid control system (4.31).

Proof. After substituting (4.53) in the derivative of Vε, we have
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V̇ε(x, u+ d) ≤ −γ
ε
Vε −

1

ε̄
‖LgvVε‖2 + LgvVε‖d‖∞

≤ −γ
ε
Vε −

1

ε̄
‖LgvVε‖2 + LgvVε‖d‖∞ − ε̄

‖d‖2
∞

4
+ ε̄
‖d‖2

∞
4

≤ −γ
ε
Vε −

(
1√
ε̄
‖LgvVε‖ −

√
ε̄
‖d‖∞

2

)2

+ ε̄
‖d‖2

∞
4

≤ −γ
ε
Vε + ε̄

‖d‖2
∞

4

≤ − γ

2ε
Vε −

γ

2ε
c1|x|2 + ε̄

‖d‖2
∞

4
. (4.58)

Therefore, for |x| ≥
√

ε̄ε
2γc1
‖d‖∞ we get exponential convergence V̇ε ≤ − γ

2ε
Vε. Therefore

we have

Vε(xi+1(ti+1)) ≤ c2

2εc1

L2
∆e
− c3

2ε
TVε(xi(ti)), ∀i ∈ Ξ, |xi| ≥

√
ε̄ε

2γc1

‖d‖∞. (4.59)

We finish the proof by picking a sufficiently small ε.

4.4.3 Hybrid Periodic Orbits and Poincaré Maps

If the solutions are periodic, we can realize controllers that render periodic solutions for

the hybrid system and the notion of input to stability of these periodic solutions can be

established. Consequently, for the solutions that are periodic with period T ∗, we can define

Poincaré maps that motivate the construction of discrete time Lyapunov functions, from

which the notion of input to stability for such periodic orbits can be established.

We will analyze periodic orbits for hybrid systems that have a directed cycle. We there-

fore have the set of l vertices

Vc = {v1, v2, . . . , vl}, (4.60)
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and the set of l edges

Ec = {e1 = (v1, v2), e2 = (v2, v3), . . . , el = (vl, v1)}. (4.61)

Therefore, the directed cycle is Γc = (Vc,Ec). Accordingly, we have the set of domains,

guards, vector fields and switching functions to yield a tuple:

IHCc = (Γc,Dc,Uc,Sc,∆c,FGc). (4.62)

Application of a control law (say u(x) = kv(x), (x, kv(x)) ∈ Dv\Sv, v ∈ V) yields the

closed loop hybrid system

IHc = (Γc,Dc,Sc,∆c,Fc), Fc := {fv1 + gv1kv1 , fv2 + gv2kv2 , . . . }. (4.63)

A periodic orbit for this directed cycle can be defined below.

Definition 47. Let (Ξ, I, ρ,C), as obtained from (4.10), be the execution of the hybrid sys-

tem with the directed cycle (4.63). The periodic orbit of this hybrid system is the execution

satisfying the following:

• Ξ = N0.

• limi→∞ ti − t0 =∞.

• ρ(i) =



v1 if i = 0, l, 2l, . . .

v2 if i = 1, l + 1, 2l + 1, . . .

...

vl if i = l− 1, 2l− 1, . . .

• Cli(tli) = Cl(i+1)(tl(i+1)).

The period of this periodic orbit is tl− t0. A detailed account on executions for periodic

orbits can be found in [46].
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Definition 48. The flow of the closed loop vector field f clρ(i) is the mappingϕρ(i) : R≥0×B→

πx(Dρ(i)), where B(Ci(ti)) is the neighborhood of Ci(ti). The flow satisfies the following

properties:

• Ci(ti) = ϕρ(i)(0,Ci(ti)).

• Ci(ti + t+ s) = ϕρ(i)(t, ϕρ(i)(s,Ci(ti))).

• ϕρ(i)(−s, ϕρ(i)(s, x)) = x, x ∈ B(Ci(ti)).

For convenience, we will use the notation for the flow: ϕρ(i)
t (x) := ϕρ(i)(t, x). We can

define the periodic orbit (from Definition 48) in terms of the flows

O =
⋃

i=0,1,...,l−1

{ϕρ(i)
t (Ci(ti)) ∈ Dρ(i) : 0 ≤ t ≤ ti+1 − ti}. (4.64)

We also have the time-to-switching function, i.e., time until the next discrete transition:

Ti = min{t ∈ Ii : ϕ
ρ(i)
t (x) ∈ S(ρ(i),ρ(i+1))}, x ∈ B(Ci(ti)) ∩ πx(S(ρ(i),ρ(i+1))). (4.65)

The Poincaré map can be defined as the first return map:

Psource(e) : πx(Se)→ πx(Se), e ∈ E, (4.66)

or in terms of the indexing set Ξ:

Pρ(i) : πx(S(ρ(i),ρ(i+1)))→ πx(S(ρ(i+l),ρ(i+l+1))), (4.67)

which can be obtained from the following:

Pρ(i)(x) = ϕ
ρ(i+l)
Ti+l

◦∆(ρ(i+l),ρ(i+l−1)) ◦ . . . (4.68)

ϕ
ρ(i+2)
Ti+2

◦∆(ρ(i+2),ρ(i+1)) ◦ ϕρ(i+1)
Ti+1

◦∆(ρ(i+1),ρ(i))(x), x ∈ S(ρ(i),ρ(i+1)).
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For this Poincaré map, we have the fixed point x∗ ∈ S(ρ(i),ρ(i+1)) that satisfies Pρ(i)(x
∗) =

x∗.

Stability and ISS properties of periodic orbits can be studied by using Poincaré maps,

in which the sequence of continuous and discrete events can be combined into one discrete

event. This discrete event can be analyzed by using discrete-time Lyapunov functions.

Therefore, we have the following formulations for the discrete-time ISS-Lyapunov func-

tion, V : Rn → R≥0, for some α, ᾱ, α, ι ∈ K∞:

α(|x− x∗|) ≤ V (x− x∗) ≤ ᾱ(|x− x∗|) (4.69)

V (Pρ(i)(x)− x∗)− V (x− x∗) ≤ −α(|x|) + ι(‖d‖∞),∀x ∈ B(x∗) ∩ πx(S(ρ(i),ρ(i+1))), ∀d.

This motivates using the ISS criterion for hybrid systems as shown in the following Lemma.

Lemma 19. If the Poincaré map Psource(e) : πx(Se)→ πx(Se) admits a continuous discrete

ISS-Lyapunov function, then the periodic orbit O of the cycle (4.63) is ISS.

We can make use of this Lemma to show stability of bipedal robotic walking in AM-

BER1 (as shown in Fig. 6.1) and DURUS (as shown in Fig. 6.6), and also show running in

DURUS (as shown in Fig. 6.7). In particular, we will focus on two kinds of uncertainty:

parameter and phase uncertainty, that are prominent in bipedal walking robots. Under the

assumption that the bipedal robot is zero stable when the model is perfectly known (pa-

rameter measure being identically zero), the notion of ISS motivates the introduction of a

measure that is a function of the uncertainty in the robot model parameters, and show that

the hybrid walking model of the robot is parameter to state stable. In a similar fashion, the

modulation of the desired trajectories (gaits) are usually done through the phase variable,

which is a function of the configuration of the robot. Joint angle estimation errors add

together leading to inaccurate determination of the phase variable. This phase uncertainty

results in unstable walking gaits, which is solved by choosing from a set of controllers that

are phase to state stable.
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Single domain hybrid systems. For single domain hybrid systems (simple hybrid sys-

tems), the subscript (or superscript) notations for the vertices and edges can be dropped to

yield only one Poincaré map and flow with reference to the guard. For this type of hybrid

system, the Poincaré map P : πx(S) → πx(S) (no subscript because of only one guard),

can be defined as: P(x) = ϕT (∆(x)), x ∈ πx(S), T is the time until the state returns to

the guard S. If x∗ ∈ πx(S) is the fixed point of this Poincaré map, we have P(x∗) = x∗.

Therefore, we have a periodic orbit with period T ∗, i.e., ϕT ∗(∆(x∗)) = x∗. Therefore, in

the neighborhood of the periodic solution, the Poincaré map allows for the reformulation

of the hybrid event into a single discrete event. Assume that O = {ϕt(∆(x∗)) ∈ πx(D) :

0 ≤ t ≤ T} is the periodic orbit of the single domain hybrid system. If this periodic orbit

is locally zero stable, then there is a constant r > 0 such that if x starts in a ball or radius

r defined around O, Br(O), then x(t) → O as t → ∞. We can construct a discrete time

ISS-Lyapunov function that has the following dissipation:

V (P(x)− x∗) ≤ e−cV (x− x∗) + ι(‖d‖∞), ∀x ∈ πx(S) ∩ Br(x∗),∀d,

=⇒ V (P(x)− x∗)− V (x− x∗) ≤ −(1− e−c)V (x− x∗) + ι(‖d‖∞), (4.70)

for some c > 0, and ι ∈ K∞. This motivates using the ISS criterion for hybrid systems as

shown in the following Lemma.

Lemma 20. If the Poincaré map P admits a smooth discrete ISS-Lyapunov function, then

the periodic orbit O of the simple version of the hybrid system (4.63) (one domain and one

guard) is ISS.
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CHAPTER 5

INPUT TO STATE STABILIZING CONTROL LYAPUNOV FUNCTIONS AND

HYBRID ZERO DYNAMICS

The goal of this chapter is to construct controllers, specifically control Lyapunov functions,

and input to state stabilizing control Lyapunov functions on partially observable systems.

The focus will be specifically on partially feedback linearizable systems. In this framework,

bipedal robots can be modeled (shown in Chapter 6) that exhibit under-actuations and full

actuations (and even overactuations). Inspired by feedback linearization, which is the most

popular way of obtaining Lyapunov functions for robotic systems, we will construct CLFs

that drive a set of outputs to zero. As a consequence of stabilizing these systems via CLFs,

is the possibility of constructing the corresponding ISS-CLFs.

5.1 Trajectory Tracking Control

We will utilize trajectory tracking control laws and establish ISS versions of these control

laws in this section. Multiple relative degrees are observed usually in the trajectory tracking

of outputs (functions of states) in several hybrid system models. We will study outputs that

are relative degrees one and two, and (as a side note) state extensibility to higher relative

degrees. Therefore, for rigid body manipulators, we have the configuration space Q ⊂ RnR ,

with nR the DOF of the manipulator, the joint positions/angles q ∈ Q, joint velocities

q̇ ∈ TqQ. Therefore, for systems such as these, we define the state x ∈ TQ ⊂ R2nR . In

general, we are interested in stable trajectory tracking in hybrid systems with the continuous

dynamics of the form (4.28), and discrete dynamics of the form (4.32). They are provided
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here again for convenience:

ẋ = fv(x) + gv(x)u, (x, u) ∈ Dv\Sv, v ∈ V,

x+ = ∆e(x
−), x− ∈ πx(Dsource(e)), e ∈ E, (5.1)

where the reset map is (4.4) with the omission of the control input. In brief, we will analyze

hybrid systems of the form (4.31) with the only noticeable difference being the notation for

the dimensions of the state x ∈ R2nR , where 2nR = n for a robot.

It is important to note that the continuous dynamics can have under-actuations (typically

observed in bipedal robots). Therefore, the systems of interest are hybrid systems with

partially observable continuous dynamics and uncontrollable discrete dynamics. It was

shown in [28] how to stabilize such systems via a RES-CLF (3.17).

5.1.1 Outputs

The goal of this section is to define the set of outputs given the state x. In order to achieve

robot walking/running, a periodic orbit is constructed (gait design) and a suitable controller

is applied that tracks this reference periodic orbit. In other words, realization of a limit

cycle in the bipedal robot results in stable walking/running. Periodicity of the trajectories

is strictly not necessary, and it will be shown that stability of hybrid systems can still be

achieved with milder assumptions: hybrid invariance, and minimum dwell time.

The problem formulation is such that the objective is to drive the robot states to the

desired values by a tracking control law. We have the set of actual outputs of the robot as

ya : TQ→ Rk, and the desired outputs as yd : R≥0 → Rk. yd is modulated by a phase (or

time) variable τ : TQ→ R≥0 (or τ : R≥0 → R≥0 for time based). By adapting a feedback

linearizing controller, we can drive the relative degree one outputs (velocity outputs)

y1,v(q, q̇) = ya1,v(q, q̇)− yd1,v(τv, αv) ∈ Rk1,v , (5.2)
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and relative degree two outputs (pose outputs)

y2,v(q) = ya2,v(q)− yd2,v(τv, αv) ∈ Rk2,v , (5.3)

to zero, with the subscript v ∈ V denoting the domain, αv denoting the parameters of the

desired trajectory. k1,v + k2,v = kv. These outputs are generally called virtual constraints

[62]. Normally, the phase variable, τv, for relative degree two outputs is a function of the

configuration τv(q). Walking gaits, viewed as a set of desired periodic trajectories, are

modulated as functions of a phase variable to eliminate the dependence on time [63]. In

this case, the velocity (relative degree one) outputs are: y1,v(q, q̇) = ya1,v(q, q̇) − yd1,v(αv),

where modulation is absent. In terms of the states, x, we can define the outputs as follows:

y1,v(x) = ya1,v(x)− yd1,v(αv)

y2,v(x) = ya2,v(x)− yd2,v(τv, αv). (5.4)

5.1.2 Feedback Linearization

The feedback linearizing controller that drives the purely state dependent outputs y1,v → 0,

y2,v → 0 is given by:

u =

 Lgvy1,v

LgvLfvy2,v


−1−

Lfvy1,v

L2
fv
y2,v

+ µ

 , (5.5)

where Lfv , Lgv denote the Lie derivatives and µ denotes the auxiliary input applied after

the feedback linearization.

Note that any effective tracking controller will theoretically suffice (the experimental

implementation uses PD control [64]). We therefore employ a control Lyapunov function

67



(CLF) based controller that can drive the following outputs to zero

ηv =


y1,v

y2,v

ẏ2,v

 . (5.6)

If the system has outputs with more relative degrees of freedom, then ηv can be accordingly

modified. Applying the controller (5.5) results in the following output dynamics:

η̇v =


0 0 0

0 0 1k2,v×k2,v

0 0 0


︸ ︷︷ ︸

Fv

ηv +


1k1,v×k1,v 0

0 0

0 1k2,v×k2,v


︸ ︷︷ ︸

Gv

µ, k1,v + k2,v = kv. (5.7)

k1,v is the size of the velocity outputs y1,v, and k2,v is the size of the relative degree two

outputs y2,v. The dimension of the outputs

k1,v + k2,v = kv

is typically equal to the number of actuators mR. Therefore, based on the actuation type,

we have the following three cases:

• Full-actuation (for rigid body manipulators kv = mR = nR).

• Under-actuation (for rigid body manipulators kv = mR ≤ nR).

• For over-actuation (for rigid manipulators kv = ma, the number of actuating inputs

that is equal to the DOF, mR > ma = nR).

We will not explicitly analyze the case of over-actuation (even though used for the case

of AMBER2 dancing) due to the fact that the outputs over constrain the given system. A

convenient way to include over-actuation is by picking some of the desired outputs as the
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actual outputs the system. Henceforth, we will assume that the number of the outputs is

always equal to the number of inputs, kv = mR = m,∀v ∈ V. Accordingly, the auxiliary

input µ ∈ U ⊂ Rm.

The auxiliary control input µ is chosen via control Lyapunov functions (CLFs) that

drives ηv → 0. More on CLFs is explained toward the end of this section.

5.1.3 Feedback Linearization of Time Dependent Outputs

Here we will pick the time based modulation τ(t) instead of the phase based modulation

shown in 5.1.2. Given (5.3), if the desired outputs are modulated by the time instead of the

state dependent phase, we have the following output representation

yt1,v(t, x) = ya1,v(x)− yd1,v(τv(t), αv), (5.8)

for velocity outputs and

yt2,v(t, x) = ya2,v(x)− yd2,v(τv(t), αv), (5.9)

for relative degree two (pose) outputs. The outputs are derived from (5.2),(5.3) where the

phase is now dependent on time τ(t). With the absence of modulation for the velocity

outputs, we have : yt1,v = y1,v. The resulting output dynamics is obtained by taking the

derivative

ẏt1,v(t, x) = Lfvy
a
1,v(x) + Lgvy

a
1,v(x)u− ẏd1,v(τv(t), α)

ÿt2,v(t, x) = L2
fvy

a
2,v(x) + LgvLfvy

a
2,v(x)u− ÿd2,v(τv(t), α). (5.10)
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Therefore, we have a time based feedback linearization for time based relative degree one

and two outputs

u(t, x) =

 Lgvy
a
1,v(x)

LgvLfvy
a
2,v(x)


−1−

Lfya1,v(x)

L2
fv
ya2,v(x)

+

ẏd1,v(τv(t), α)

ÿd2,v(τv(t), α)

+ µt

 , (5.11)

where µt ∈ U ⊂ Rm is the new time dependent linear output that can be be properly

constructed to yield convergence of the time based outputs. Applying the controller (5.11)

results in the following output dynamics:

η̇t,v =


0 0 0

0 0 1k2,v×k2,v

0 0 0


︸ ︷︷ ︸

Fv

ηt,v +


1k1,v×k1,v 0

0 0

0 1k2,v×k2,v


︸ ︷︷ ︸

Gv

µt, k1,v + k2,v = kv, (5.12)

where

ηt,v =


yt1,v

yt2,v

ẏt2,v

 . (5.13)

5.2 Extension of Artstein’s Theorem

We will omit the subscript v for simpler representation. Given the output η, we have the

following candidate Lyapunov function: V (η) = ηTPη, where P is the solution to the

continuous-time algebraic Riccati equation (CARE):

F TP + PF − PGGTP +Q = 0, Q = QT > 0. (5.14)
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V is positive definite and can be described as:

λmin(P )‖η‖2 ≤ V ≤ λmax(P )‖η‖2, (5.15)

where λmin(P ), λmax(P ) > 0 are the minimum and maximum eigenvalues of P respec-

tively. Taking the derivative of V yields:

V̇ (η) = ηT (F TP + PF )η + 2ηTPGµ. (5.16)

To find a specific value of µ, we can utilize a minimum norm controller (see [65]) that

minimizes µTµ subject to the inequality constraint:

V̇ (η, µ) = ηT (F TP + PF )η + 2ηTPGµ ≤ −γV (η), (5.17)

where γ := λmin(Q)
λmax(P )

is a constant obtained from CARE. Satisfying (5.17) implies exponen-

tial convergence. This implies that V (η) is an output stabilizing CLF based on Definition

21. By representing V (x) = η(x)TPη(x), we have a set of controllers that exponentially

stabilizes the outputs η.

K(x) = {u ∈ U : LfV (x) + LgV (x)u+ γV (x) ≤ 0}, (5.18)

where LfV (x) = ∂V
∂x
f(x), LgV (x) = ∂V

∂x
g(x).

By choosing ε > 0 so that we have the following matrix:

Pε :=


1k1,v×k1,v 0 0

0 1
ε
1k2,v×k2,v 0

0 0 1k2,v×k2,v

P

1k1,v×k1,v 0 0

0 1
ε
1k2,v×k2,v 0

0 0 1k2,v×k2,v

 ,
(5.19)
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Figure 5.1: Figure showing a comparison between ES-CLF and RES-CLF. The impacts do
not let V (η) go to zero, while the ε term in Vε(η) allows for convergence to zero.

that is in fact solution to the following CARE:

F TPε + PεF −
1

ε
PεGG

TPε +
1

ε
Qε = 0, (5.20)

where

Qε =


1k1,v×k1,v 0 0

0 1
ε
1k2,v×k2,v 0

0 0 1k2,v×k2,v

Q

1k1,v×k1,v 0 0

0 1
ε
1k2,v×k2,v 0

0 0 1k2,v×k2,v

 = 0,

(5.21)

which satisfies a stronger convergence rate condition for V̇ε ≤ −γ
ε
ηTPεη. Accordingly, we

can construct the following Lyapunov function:

Vε(η) = ηTPεη, (5.22)

which satisfies the conditions for a rapidly exponentially stabilizing control Lyapunov func-

tion (RES-CLF), (3.16).

It is verified that Vε is a RES-CLF. Fig. 5.1 shows the use of having rapid convergence,

which is to compensate for the destabilizing impacts in order to realize exponential conver-

gence for a hybrid system model. By (3.16), c1, c2 > 0 take the minimum and maximum
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eigenvalues of P , respectively. Differentiating (5.22) yields:

V̇ε(η) = LFVε(η) + LGVε(η)µ, (5.23)

where

LFVε(η) = ηT (F TPε + PεF )η, LGVε(η) = 2ηTPεG. (5.24)

We can define a minimum norm controller that minimizes µTµ subject to the inequality

constraint:

LFVε(η) + LGVε(η)µ ≤ −γ
ε
Vε(η), (5.25)

which when satisfied implies exponential convergence. Therefore, we can define a set of

controllers

Kε(η) = {µ ∈ U : LFVε(η) + LGVε(η)µ+
γ

ε
Vε(η) ≤ 0}, (5.26)

which yields the set of control values that satisfies the desired convergence rate. Since

Vε(η(x)) = η(x)TPεη(x), we now have the class of output stabilizing controllers defined

for this robotic system

Kε(x) = {u ∈ U : LfVε(x) + LgVε(x)u+
γ

ε
Vε(x) ≤ 0}, (5.27)

which is obtained by substituting (6.37) in the derivative of the Lyapunov function V̇ε

LfVε(x) = η(x)TPε
∂η(x)

∂x
f(x) + fT (x)

∂η(x)

∂x

T

Pεη(x)

LgVε(x) = 2η(x)TPε
∂η(x)

∂x
g(x). (5.28)
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This is a valid RES-CLF for the output dynamics (of η) by feedback linearization. There-

fore, by extension of Artstein’s theorem (Lemma 10), there exists an IOS-CLF (rather

Re-IOS-CLF) given by the set

Kε,ε̄(x) = {u ∈ U : LfVε(x) + LgVε(x)u+
γ

ε
Vε(x) +

1

ε̄
LgV (x)LgV (x)T ≤ 0}. (5.29)

It is important to note that CLF used here is to control what are called the transverse dy-

namics, which are not specifically described here. 5.3 will explain more about stabilizing

the dynamics of the entire state space, i.e., the transverse dynamics (or normal dynam-

ics) and the uncontrolled dynamics (or zero dynamics). The zero dynamics arise due to

under-actuations in robotic systems.

In a similar fashion, for time based outputs ηt, we can obtain the set for time based

RES-CLFs and the corresponding time based Re-IOS-CLFs in the following manner

Kt(ηt) = {µ ∈ U : LFV
t
ε (ηt) + LGV

t
ε (ηt)µ+

γ

ε
V t
ε (ηt) ≤ 0}. (5.30)

We denote V t
ε (ηt(t, x)) = ηt(t, x)TPεηt(t, x). Therefore

Kt
ε(x) = {u ∈ U : LfV

t
ε (t, x) + LgV

t
ε (t, x)u+

γ

ε
V t
ε (t, x) ≤ 0}, (5.31)

where LfV
t
ε (t, x) =

∂V t
ε (t, x)

∂t
+ ηt(t, x)TPε

∂ηt(t, x)

∂x
f(x) + fT (x)

∂ηt(t, x)

∂x

T

Pεηt(t, x)

LgV
t
ε (t, x) = 2ηTt (t, x)Pε

∂ηt(t, x)

∂x
g(x), (5.32)

which yields the class of controllers

Kt
ε,ε̄(x) = {u ∈ U : LfV

t
ε (t, x) + LgV

t
ε (t, x)u+

γ

ε
V t
ε (t, x) . . .

+
1

ε̄
LgV

t(t, x)LgV
t(t, x)T ≤ 0}, (5.33)
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that is Re-IOS-CLF.

5.3 Partially Observable Systems

It was shown in 5.2 that given the set of RES-CLFs, it is possible to obtain Re-IOS-CLFs

that input to state stabilize systems with impulses. We are interested in how the zero dynam-

ics and the RES-CLF allow us to obtain stable tracking (or periodic orbits) for the full order

system. It was shown in [28] that an exponential stability assumption is not sufficient for

ensuring stability of hybrid periodic orbits due to the discrete dynamics (impacts). Further,

[28] proposed a solution that realizes stronger exponential convergences for the continuous

dynamics that compensates for the destabilizinng impacts (see Fig. 5.1). Specifically the

systems were of the form:

η̇ = ψf (η, z) + ψg(η, z)u

ż = ψz(η, z), (5.34)

ψf (0, z) = 0 and ψf , ψg, ψz are all Lipschitz continuous w.r.t. η, z. η ∈ Rk1+2k2 is the

set of observable states, z ∈ Rn−k1−2k2 is the set of unobservable states. η are also called

the transverse coordinates. Accordingly, z are called the zero coordinates, due to the fact

that ż = ψz(0, z) are the zero dynamics. Given the continuous dynamics of a general

system, (4.28), we can reformulate the dynamics to represent in the form (5.34). This

reformulation is achieved by representing the disturbance inputs along with the transverse

and zero dynamics in the following fashion

η̇ = Fη︸︷︷︸
ψf

+G

 Lgy1

LgLfy2


︸ ︷︷ ︸

ψg

u+

 Lgy1

LgLfy2


−1 Lfy1

L2
fy2


︸ ︷︷ ︸

d


ż = ψz(η, z), (5.35)
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which satisfy the standing assumptions required for constructing input to state stabilizing

controllers for the continuous dynamics (see (2.18) for conditions on the vector fields).

It is also possible to have simpler representations by substituting a feedback linearizing

controller and investigate the perturbations w.r.t. µ: η̇ = Fη + Gµ + Gd. Therefore, for

such types of controllers, the systems will be of the form:

η̇ = Fη +Gµ

ż = Ψ(η, z), (5.36)

which is obtained from (5.7). Main objective is to study ISS properties of partially ex-

ponentially stabilizing controllers for systems of the form (5.34), and formulation of the

transverse (η) dynamics is dependent on the types of controllers used. More on modeling

the uncertainties in these types of systems will be studied in a separate chapter (specifi-

cally Chapter 7). Similar to the continuous dynamics, the impact dynamics can also be

represented in transformed coordinates:

∆(η−, z−) = (η+, z+), (5.37)

where the ∆ = ∆e, e ∈ E, has the subscripts omitted for convenience. Henceforth, in this

chapter, it will be assumed that the impact maps ∆e always transform the coordinates (η, z)

from one domain to another.

To summarize, the goal of this section is to determine stabilizing controllers for hybrid

systems of the type (4.31), where the dynamics is of the form (5.34). This section will

also identify the unobservable/uncontrollable states of robotic hybrid systems and then

determine stabilizing controllers for these partially observable/controllable systems.
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5.3.1 Partial and Full Zero Dynamics

As an example, we will study an underactuated robot model and show how the transverse

and zero dynamics evolve based on the implementation of the CLFs.

Example 1. The EOM (which is also provided in (6.36)) for an nR-DOF robotic system,

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (5.38)

consisting of inertia, Coriolis-centrifugal and gravity matrices (more details can be found

in (6.36)). B is the mapping from the input u ∈ RmR to the joints. We assume that there

are nR−mR rows of that do not have the input u (corresponding rows of B are zeros). We

can realize the state x = (q, q̇) ∈ R2nR . Therefore, we can pick the first nR −mR rows of

the inertia matrix multiplied with q̇: D1(q)q̇, which yields

d

dt
(D1(q)q̇) = Ḋ1(q)q̇ +D1(q)q̈ = Ḋ1(q)q̇ −H1(q, q̇) (5.39)

The input u does not appear in (5.39). Given a portion of the configuration space q1 ∈

RnR−mR , we can have the following set of zero coordinates

z =

 q1

D1(q)q̇

 ∈ R2nR−2mR . (5.40)

The configuration q consists of both actuated and unactuated variables. We are interested

in the stability of the zero dynamics i.e., stability of (5.40). Normally, for walking/running,

the optimization problem is formulated such that the zero dynamics has a stable periodic

orbit. For hybrid systems, the problem is formulated such that the hybrid zero dynamics

has a stable periodic orbit (see [66]). Theorem 1 from [28] shows that an exponentially

stable periodic orbit in the zero dynamics implies exponentially stable periodic of the full

dynamics if the controller of the form (5.18) is used.
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Since the goal is to also include systems that do not show periodicity, we will study

stabilization and input to state stabilization of trajectory tracking controllers in general. The

assumption is that the continuous dynamics are input to state stable (for both the transverse

and the zero dynamics). In addition, in order to practically represent a real world model,

the hybrid invariance conditions are also relaxed (more details given in 5.3.2).

When the control objective is met such that η = 0 for all time then the system is said to

be operating on the zero dynamics surface [67]

Z = {x ∈ πx(D)|η = 0}, (5.41)

for the domain D = Dv (the subscript notation v is suppressed for convenience). Further,

by relaxing the zeroing of the velocity output y1 : TQ → Rk1 , we can realize partial zero

dynamics:

PZ = {x ∈ πx(D)|y2 = 0, Lfy2 = 0}. (5.42)

We can describe this condition w.r.t. every domain, Dv, as

PZv = {x ∈ πx(Dv)|y2,v = 0, Lfvy2,v = 0}, v ∈ V. (5.43)

To illustrate, the humanoid robot, DURUS (see Fig. 6.6), has feet and employs ankle

actuation to propel the hip forward during the continuous dynamics. The relaxation as-

sumption is implemented on the hip velocity, resulting in partial zero dynamics. For the

running robot DURUS-2D (see Fig. 6.7), since the feet are underactuated, purely relative

degree two outputs are picked that result in full zero dynamics of the system

Zv = {x ∈ πx(Dv)|y2,v = 0, Lfy2,v = 0}, v ∈ V, (5.44)
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which is similar to (5.43) except for the change of notation from PZv to Zv. In the case

of AMBER2 (see Fig. 6.3), there are certain domains that use relative degree one and

two outputs, and also domains that are modeled as purely relative degree two outputs.

Therefore, based on the domain, the dancing of AMBER2 is going to exhibit either pure

zero dynamics or partial zero dynamics.

5.3.2 Partial and Full Hybrid Zero Dynamics

The controller u given by (5.18) or (5.27) or (5.29), being domain specific, guarantees

partial (or full) zero dynamics only in the continuous dynamics. Therefore, for a hybrid

control system IHC, partial (full) hybrid zero dynamics can be guaranteed if and only

if the discrete maps {∆e}e∈E are invariant of the partial (or full) zero dynamics in each

domain. As a result, the parameters αv of the outputs must be chosen in a way that renders

the surface invariant through impacts. This condition can be represented mathematically as

∆e(PZsource(e) ∩ Ssource(e)) ⊂ PZtarget(e), e = {source(e)→ target(e)} ∈ E, (5.45)

for transitions from partial zero dynamics to partial zero dynamics, and

∆e(Zsource(e) ∩ Ssource(e)) ⊂ Ztarget(e), e = {source(e)→ target(e)} ∈ E, (5.46)

for the transitions from full zero dynamics to full zero dynamics. We have other variants

of this formulation based on the type of the zero dynamics that the source and the target

domains contain

∆e(Zsource(e) ∩ Ssource(e)) ⊂ PZtarget(e), e = {source(e)→ target(e)} ∈ E,

∆e(PZsource(e) ∩ Ssource(e)) ⊂ Ztarget(e), e = {source(e)→ target(e)} ∈ E. (5.47)
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Figure 5.2: Figure showing the zero dynamics for a single domain, single reset map. The
bipedal robot AMBER1 (see Fig. 6.2) will typically have this type of hybrid zero dynamics.

Fig. 5.2 shows a single domain hybrid system (simple hybrid system) consisting of 2-

dimensional zero dynamics for the bipedal robot AMBER1 (see Fig. 6.2). Fig. 5.3 depicts

the dynamics of a two domain hybrid system with 2-dimensional partial zero dynamics.

The best way to ensure hybrid invariance under a discrete transition is by a careful selection

of the desired trajectories (desired gait) via the parameterization: αv. Hence if the desired

trajectories are a function of Bezier polynomials, the parameters αv are the coefficients.

These coefficients are chosen by using a direct collocation based walking gait optimization

problem, which is explained in [64, 68].

Given the transverse coordinates ηv and the zero coordinates zv, we have the diffeo-

morphism Φv : πx(Dv) → Rn that maps from x to (ηv, zv). The diffeomorphism can be

divided into parts

Φv(x) =


Φ1,v(x)

Φ2,v(x)

Φ3,v(x)

 =



y1,v(x)

y2,v(x)

ẏ2,v(x)

zv(x)


. (5.48)
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Similarly, the outputs can also be divided into two parts

ηv =

y1,v

η2,v

 , η2,v =

y2,v

ẏ2,v

 . (5.49)

We can also derive the tangent map, dΦv : Txπx(Dv)→ T(ηv,zv)Φv(πx(Dv)), which can

also be divided into parts dΦη
v, dΦz

v, for the reduced order coordinates obtained from (5.48).

The diffeomorphism and the tangent map for the coordinates (y1,v, zv) are given by

Φz
v =

Φ1,v

Φ3,v

 , dΦz
v =

dΦ1,v

dΦ3,v

 . (5.50)

Similar to the state based transformation, the time based output dynamics can also be writ-

ten in normal form as

η̇t = Fηt +Gµt,

żt = Ψt(ηt, zt). (5.51)

zt are the set of zero dynamic coordinates normal to ηt and has the invariant dynamics żt =

Ψt(0, zt). For these time based states, we have the diffeomorphism: Φt(t, x) = (ηt, zt).

Similarly to (5.49), the time based coordinates outputs can also be divided into two

parts

ηt =

 yt1
ηt,2

 , ηt,2 =

yt2
ẏt2

 , (5.52)

where the domain v is ignored for ease of representation.

We can now define the classes of controllers that stabilize the hybrid system (4.31).
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Figure 5.3: Figure showing a typical periodic orbit (O) on the partial (full) hybrid zero
dynamics. The figure shows a two dimensional partial zero dynamics manifold, which can
vary based on the hybrid system chosen.

Again, we will ignore the subscript v for ease of reading. We have the class of controllers:

K(η) = {µ ∈ U : LFV (η) + LGV (η)µ+ γV (η) ≤ 0}, (5.53)

where LfV (η) = ηT (F TP + PF )η, LgV (η) = 2ηTPG, and

K(η, z) = {u ∈ U : LfV (η, z) + LgV (η, z)u+ γV (η) ≤ 0}, (5.54)

where LfV (η, z) = ∂V
∂x
f(x), LgV (η, z) = ∂V

∂x
g(x), with x = Φ−1(η, z). We have the class

of controllers from RES-CLF as

Kε(η) = {µ ∈ U : LFVε(η) + LGVε(η)µ+
γ

ε
Vε(η) ≤ 0}, (5.55)

where LFVε(η) = ηT (F TPε + PεF )η, LGVε(η) = 2ηTPεG, and

Kε(η, z) = {u ∈ U : LfVε(η, z) + LgVε(η, z)u+
γ

ε
Vε(η) ≤ 0}, (5.56)
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which is obtained by substituting (4.28) in the derivative of the Lyapunov function V̇ε

LfVε(η, z) = ηTPε
∂η

∂x
f(x) + fT (x)

∂η

∂x

T

Pεη

LgVε(η, z) = 2ηTPε
∂η

∂x
g(x), x = Φ−1(η, z) (5.57)

and finally the class from Re-ISS-CLF as

Kε,ε̄(η, z) = {u ∈ U : LfVε(η, z)+LgVε(η, z)u+
γ

ε
Vε(η) + . . .

1

ε̄
LgVε(η, z)LgVε(η, z)

T ≤ 0}. (5.58)

For time based outputs ηt we have the following formulation for the RES-CLF and

Re-ISS-CLF

Kt
ε(ηt) = {µ ∈ U : LFV

t
ε (ηt) + LGV

t
ε (ηt)µ+

γ

ε
V t
ε (ηt) ≤ 0}, (5.59)

where LFV t
ε (ηt) = ηTt (F TPε + PεF )ηt, LGV

t
ε (ηt) = 2ηTt PεG, and

Kt
ε(ηt, zt) = {u ∈ U : LfV

t
ε (ηt, zt) + LgV

t
ε (ηt, zt)u+

γ

ε
V t
ε (ηt) ≤ 0}, (5.60)

which is obtained by substituting (6.37) in the derivative of the Lyapunov function V̇ε

LfV
t
ε (ηt, zt) =

∂V t
ε

∂t
ηTt Pε

∂ηt
∂x

f(x) + fT (x)
∂ηt
∂x

T

Pεηt

LgV
t
ε (ηt, zt) = 2ηTt Pε

∂ηt
∂x

g(x), x = Φ−1(ηt, zt) (5.61)

and finally the class for Re-ISS-CLF as

Kt
ε,ε̄(ηt, zt) = {u ∈ U : LfV

t
ε (ηt, zt)+LgV

t
ε (ηt, zt)u+

γ

ε
V t
ε (ηt) + . . .

1

ε̄
LgV

t
ε (ηt, zt)LgV

t
ε (ηt, zt)

T ≤ 0}. (5.62)
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For limiting the use of notations, the classes of controllers defined in (5.59) and (5.60)

are both denoted by Kt
ε with the difference being the dependency on the number of ar-

guments. Therefore, for a standard time based RES-CLF, the class, without substituting

(5.11), would be denoted by Kt
ε(ηt, zt), and for the time dependent RES-CLF, the class

that utilizes the auxiliary input µt after substituting (5.11) would be denoted by Kt
ε(ηt).

Similarly, for a state based RES-CLF without the substitution of (5.5), the class of con-

trollers is denoted by Kε(η, z), and with the substitution would be denoted by Kε(η). To

summarize, the main control input u is a function of two arguments, while the auxiliary

control input µ is a function of only one, the normal coordinates η.

5.4 Formal Results of Stability

In this section, we will investigate the stability and robustness of hybrid systems for con-

trollers of the form (5.56) first and then analyze stability of input to state stabilizing con-

trollers of the form (5.58). Theorem 2 in [28] showed for hybrid periodic orbits and can

be easily extended to aperiodic hybrid systems to realize behaviors like dancing (discussed

more in Chapter 10). By viewing walking as periodic orbits that are hybrid in nature,

we check for conditions that result in attractive and forward invariant periodic orbits. We

analyze the robustness by modeling the uncertainties of the system in Chapter 7.

Applying the controller kv,ε(ηv, zv) ∈ Kv,ε(ηv, zv) (from the set (5.56) along with the

inclusion of the domain dependency v ∈ V) on the hybrid control system IHC (4.31)

yields the following hybrid system

IHε = (Γ,D,S,∆,Fε), (5.63)

where the only difference is the set of vector fields Fε = {fv1 +gv1kv1,ε, fv2 +gv2kv2,ε, . . . }

which are obtained after the substitution of (5.56). Similarly, applying kv,ε,ε̄(ηv, zv) ∈
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Kv,ε,ε̄(ηv, zv) (5.58) instead of (5.56) results in the hybrid system

IHε,ε̄ = (Γ,D,S,∆,Fε,ε̄). (5.64)

Similar to the construction of (4.19), we have the following hybrid control system that

models the disturbances, given the closed loop hybrid system (5.64):

IHCε,ε̄,d = (Γ,Dd,Sd,∆d,Fε,ε̄G), (5.65)

where the collection of vector fields Fε,ε̄G is obtained after the substitution of (5.58).

Since the same controller (5.56) drives the relative degree two outputs y2,v → 0, as spec-

ified by (5.42),(5.44), the result is (partial) zero dynamics. Hybrid invariance (5.45)-(5.47)

and convergence of outputs y2,v → 0 results in a reduced order hybrid system consisting of

only the coordinates y1,v, zv.

IH|z =(Γ,D|z, S|z,∆|z,F|z), (5.66)

where D|z = {PZv1 ,PZv2 , . . . },

S|z = {Se1 ∩ PZsource(e1),Se2 ∩ PZsource(e2), . . . },

∆|z = {∆e1|z,∆e2|z, . . . },

F|z = {fv1|z, fv2 |z, . . . }.

This definition of reduced order hybrid system applies to both bipedal walking and running

with the difference being the omission of y1 resulting in purely zero dynamic coordinates.

It will be inherently implied that all formal stability results established for walking (PZ)

are also applicable for running (Z).

Canonical embedding. The partial (full) hybrid zero dynamics can be embedded into

the full order system via the canonical embedding, for which the states of the partial zero
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dynamics get mapped into the states of the full order system: Πv
0 : Φz

v(PZv) → Φv(Dv).

Therefore the canonical embedding yields Πv
0(y1,v, zv) = (y1,v, 0, zv).

5.4.1 Aperiodic systems

Here, in this subsection, we will study non-periodic systems and then study input to state

stability properties of the continuous time controllers (developed so far) for hybrid systems.

We will assume that each continuous event satisfies the minimum dwell time assumption

(T > 0), similar to what was constructed in 4.4.2.

Theorem 3. For systems with impulse effects of the form (5.65), assume that the zero dy-

namics is exponential input to state stable (e-ISS) in the continuous dynamics. Also assume

that the minimum dwell time conditions are satisfied. Applying the Lipschitz continuous

feedback law, u(ηv, zv) ∈ Kv,ε,ε̄(ηv, zv), v ∈ V that partially rapidly exponentially ISSabi-

lizes the continuous dynamics implies that the system (5.65) is ISS.

Proof. The transverse dynamics is rapidly exponentially-ISS in the continuous dynamics.

Therefore, for the Lyapunov function Vε,v = ηTv Pε,vηv, we have for some ιη ∈ K∞

p1,v‖ηv‖2 ≤ Vε,v(ηv) ≤ p2,v

ε2
‖ηv‖2

V̇ε,v ≤ −
γ

ε
Vε,v + ιη(‖d‖∞). (5.67)

Generic versions for Vε,v (i.e., not just ηTv Pε,vηv) is also possible by converse theorems

for exponential stability. We will choose equal convergence rates across all continuous

dynamics for ηv (possible because they are controllable). The perturbation ιη(‖d‖∞) is the

maximum of the disturbances across all continuous events. Similarly, zero dynamics is

also exponential input to state stable (e-ISS) in the continuous dynamics, and by converse

ISS-Lyapunov theorem (see [34] for a detailed account on converse Lyapunov theorems for
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ISS systems)

p3,v‖zv‖2 ≤ Vz,v ≤ p4,v‖zv‖2

∂Vz,v
∂zv

Ψv(0, zv) ≤ −p5,v‖zv‖2 + ιz(‖dz‖∞)∣∣∣∣∂Vz,v∂zv

∣∣∣∣ ≤ p6,v‖zv‖ (5.68)

for some ιz ∈ K∞. We therefore have the following Lyapunov candidate for the full order

dynamics for each domain v ∈ V:

Vv = σvVε,v + Vz,v (5.69)

Taking the derivative of Vv, we have the following

V̇v = σvV̇ε,v +
∂Vz,v
∂zv

Ψv(ηv, zv) (5.70)

≤ −σv
γ

ε
Vε,v +

∂Vz,v
∂zv

Ψv(0, zv) +
∂Vz,v
∂zv

(Ψv(ηv, zv)−Ψv(0, zv)) + σvιη(‖d‖∞)

≤ −σv
γ

ε
Vε,v − p5,v‖zv‖2 +

∂Vz,v
∂zv

(Ψv(ηv, zv)−Ψv(0, zv)) + σvιη(‖d‖∞) . . .

+ σvιz(‖dz‖∞)

≤ −σv
γ

ε
Vε,v + Lη,vp6,v‖zv‖‖ηv‖ − p5,v‖zv‖2 + max{2σvιη(‖d‖∞), 2ιz(‖dz‖∞)},

and by picking a sufficiently large σv > 0, we have that the Lyapunov candidate Vv is

indeed an e-ISS Lyapunov function. Similar to the results obtained in (4.45) we have the

following inequality for each domain and its corresponding set of guards.

V̇v(ηv, zv, d) ≤ −c1Vv(ηv, zv) + max{2σιη(‖d‖∞), 2ιz(‖dz‖∞)},

Vv(∆e(η
−
v , z

−
v )) ≤ ec2Vv(η−v , z

−
v ) for each source(e) = v. (5.71)

Note that Vsource(e)(∆e(η
−
v , z

−
v )) 6= Vtarget(e)(∆e(η

−
v , z

−
v )). Assume σ = maxv∈V σv. We
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can also assume that c1, c2 are the worst case values giving the worst case convergence

rates for both the continuous and discrete dynamics across all domains and guards. It is

difficult to stabilize hybrid systems that have multiple Lyapunov functions based on the

continuous dynamics of the system. A convenient way to establish input to state stability

for systems of this type is by assuming a minimum dwell time condition, which was also

used in Theorem 2.

Given the disturbance ‖dσ‖∞ := ‖(d, dz)‖∞, we can find ισ ∈ K∞, such that

ισ(‖dσ‖∞) = max{2σιη(‖d‖∞), 2ιz(‖dz‖∞)}.

Let p1 := minv∈V p1,v,p2 := maxv∈V p2,v. Given the hybrid control system of the form

(4.31) and feedback controller of the form, u ∈ Kε,ε̄, given by (5.58), we have the execution

(Ξ, I, ρ,C). The execution of the closed loop system with impulse effects, is similar to the

execution defined in Chapter 4. We therefore, have that under sufficiently large enough

dwell time T , states (ηv, zv)→ 0, v ∈ V as t→∞.

Under a constant bounded disturbance, ‖d‖∞, the exponential ultimate bound for the

states bc for each continuous event can be explicitly computed

V̇v(ηv, zv, d) ≤ −c1

2
Vv(ηv, zv), for‖ηv, zv‖ ≥

c1

p1

ισ(‖dσ‖∞)

=⇒ bc :=

(
2c1

p1

ισ(‖dσ‖∞)

) 1
2

. (5.72)

By assuming hybrid invariance of the impact map ∆e(0, 0) = (0, 0), we have

‖∆e(ηv, zv)‖ ≤ L∆,e‖(ηv, zv)‖, v = source(e), (5.73)

L∆,e is the Lipschitz constant. Let L∆ = maxe∈E L∆,e. We therefore have the bounds

for the post impact map for each guard bi := L∆bc. Therefore, given these bounds, the

minimum dwell time can be explicitly computed. If bi ≥ ‖(ηv(0), zv(0))‖ ≥ bc, in each
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continuous event, then following inequality should be satisfied:

‖(ηv(T ), zv(T ))‖ ≤ bc

‖(ηv(T ), zv(T )‖ ≤ p2

ε
e−

γ
4ε
T‖(ηv(0), zv(0))‖ ≤ p2

ε
e−

γ
2ε
T bi

≤ p2

ε
e−

γ
4ε
TL∆bc. (5.74)

Therefore the dwell time T should be large enough so that ‖(ηv(T ), zv(T ))‖ ≤ bc. This

ensures that the states always remain in the ultimate bound. It can be observed that as

‖dσ‖∞ gets smaller and smaller, the states go to zero.

Non-hybrid invariance conditions. Assuming ∆e(0, 0) 6= (0, 0). We can rewrite the

impact equations

‖∆e(ηv, zv)−∆e(0, 0) + ∆e(0, 0)‖ ≤ L∆‖(ηv, zv)‖+ ‖∆e(0, 0)‖ (5.75)

Therefore, by taking di = L∆‖(ηv, zv)‖‖∆e(0, 0)‖ + ‖∆e(0, 0)‖2, we have the following

inequalities for the Lyapunov candidate

V̇v(ηv, zv, d) ≤ −c1Vv(ηv, zv) + max{2σιη(‖d‖∞), 2ιz(‖dz‖∞)},

Vv(∆e(η
−
v , z

−
v )) ≤ ec2Vv(η−v , z

−
v ) + di for each source(e) = v. (5.76)

Due to non-hybrid invariance, the bound on the post impact states is larger bi = L∆bc +

‖∆e(0, 0)‖. Therefore, for bi ≤ ‖(ηv, zv)‖ ≤ bc, we need to satisfy the dwell time condition

to allow sufficient time for the states to reach the ultimate bound. In other words, for non-

hybrid invariance conditions, the time required to come back to the ultimate bound is larger.
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5.4.2 Periodic Systems

By transforming x into the coordinates (ηv, zv), v ∈ V by using the diffeomorphism (5.48),

we can define the flow for the transformed coordinates similar to Definition 48. For ease of

notations, we will re-denote the flow of the transformed coordinates (ηv, zv) as ϕv.

Definition 49. Given the execution (4.10) of the hybrid system (5.64), the flow of the closed

loop vector field fρ(i)+gρ(i)kρ(i),ε,ε̄ is the mappingϕρ(i) : R≥0×B→ Φρ(i)(πx(Dρ(i))), where

B(Φρ(i)(Ci(ti))) is the neighborhood of the diffeomorphism of Ci(ti). The flow satisfies the

following properties:

• Φρ(i)(Ci(ti)) = ϕρ(i)(0,Φρ(i)(Ci(ti))).

• Φρ(i)(Ci(ti + t+ s)) = ϕρ(i)(t, ϕρ(i)(s,Φρ(i)(Ci(ti)))).

• ϕρ(i)(−s, ϕρ(i)(s, (ηρ(i), zρ(i)))) = (ηρ(i), zρ(i)), (ηρ(i), zρ(i)) ∈ B(Φρ(i)(Ci(ti))).

For convenience, denote ϕρ(i)(t, (ηρ(i), zρ(i))) = ϕ
ρ(i)
t (ηρ(i), zρ(i)).

If the hybrid system (5.63) contains a directed cycle, i.e., if the hybrid system (5.63) is

of the form (4.63), we can obtain formulations for periodic orbits. Therefore, we have the

hybrid control system of the form (4.62). Similarly, under hybrid invariance conditions, we

have the following tuple for the reduced order hybrid system with the directed cycle:

IHc|z =(Γc,Dc|z,Sc|z,∆c|z,Fc|z), (5.77)

The outputs of the system are picked such that a stable periodic orbit in the hybrid zero

dynamics is realized.

We apply kv,ε(x) ∈ Kv,ε (5.56) for the continuous dynamics on the hybrid control

system (4.62) to yield the closed loop hybrid system:

IHε
c = (Γc,Dc,Sc,∆c,Fεc). (5.78)
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We apply kv,ε,ε̄(x) ∈ Kv,ε,ε̄ (5.58) for the continuous dynamics on the hybrid control

system (4.62) to yield the following closed loop hybrid system:

IHε,ε̄
c = (Γc,Dc,Sc,∆c,Fε,ε̄c ). (5.79)

Under disturbances, we will have the following hybrid control system formulation:

IHCε,ε̄,dc = (Γc,Dd
c ,Sdc ,Ud

c ,∆
d
c ,Fε,ε̄c Gc). (5.80)

Assume that there is a periodic execution in the partial (full) hybrid zero dynamics of

the reduced order hybrid system with the directed cycle (5.77). The periodic orbit is the

execution (Ξ, I, ρ,Cz) satisfying the following:

• Ξ = N0.

• limi→∞ ti − t0 =∞.

• ρ(i) =



v1 if i = 0, l, 2l, . . .

v2 if i = 1, l + 1, 2l + 1, . . .

...

vl if i = l− 1, 2l− 1, . . .

• Cz
li(tli) = Cz

l(i+1)(tl(i+1)).

Here each Cz
i (t) ∈ PZρ(i), t ∈ Ii. Similar to Definition 49, we can define the flow of

the partial zero dynamics in terms of the transformed coordinates. Denote the flow of the

partial zero dynamics as ϕz,vt : R≥0 × B→ Φz
v(PZv)

Oz denotes the periodic execution in terms of the transformed coordinates

Oz := (Ξ, I, ρ,ΦCz), ΦCz := {Φz
ρ(i)C

z
i }i∈Ξ, Φz

ρ(i)C
z
i (t) := Φz

ρ(i)(C
z
i (t)). (5.81)
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Since we know that by applying a control law via the RES-CLF for the transverse dy-

namics (5.56), we can render the outputs η2,v → 0 in the continuous dynamics. Therefore,

if the outputs are rendered zero, the periodic orbit in the hybrid zero dynamics can be em-

bedded into the full order dynamics to yield the periodic orbitO of the full order dynamics.

This periodic orbit is obtained via the canonical embedding: Πv
0(y1,v, zv) = (y1,v, 0, zv):

O := Π0(Oz) := (Ξ, I, ρ,Π0ΦCz), Π0ΦCz := {Πρ(i)
0 (Φz

ρ(i)C
z
i )}i∈Ξ. (5.82)

Fig. 5.3 shows a periodic orbit for illustration.

By defining the norm ‖(ηv, zv)‖ = ‖y1,v‖ + ‖η2,v‖ + ‖zv‖, we can define the distance

from the periodic orbit as

‖(ηv, zv)‖O = inf
(η′v,z

′
v)∈O
‖(ηv, zv)− (η′v, z

′
v)‖

= inf
(y′1,v,z

′
v)∈Oz

‖(zv − z′v)‖+ ‖(y1,v − y′1,v)‖+ ‖η2,v‖. (5.83)

The continuous dynamics is exponentially stable in each domain if there are constants

r, δ1, δ2 > 0 such that if

(ηv, zv) ∈ {(ηv, zv) ∈ Φv(πx(Dv)) : ‖(ηv, zv)‖O < r},

it follows that ‖ϕv
t (ηv, zv)‖O ≤ δ1e

−δ2t‖(ηv, zv)‖O. Exponential stability of O is obtained

via Poincaré maps, (4.66). Hereafter, we redefine the Poincaré maps in terms of the trans-

formed coordinates (similar to the redefinition done for the flow ϕv
t and the reset map ∆e):

Psource(e) : Φsource(e)(πx(Se))→ Φsource(e)(πx(Se)), e ∈ E. (5.84)

The fixed point is denoted by (η∗, z∗) ∈ Ssource(e) such that Psource(e)(η
∗, z∗) = (η∗, z∗)

for some e ∈ E. The periodic orbit O is exponentially stable if ‖Pv(ηv, zv) − (η∗, z∗)‖ ≤
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e−c‖(ηv − η∗, zv − z∗)‖, c > 0,(ηv, zv) ∈ B(η∗, z∗) ∩ Se. Poincaré map of the partial (full)

hybrid zero dynamics Pz and the corresponding exponentially stability of the periodic orbit

Oz can also be similarly defined.

Analysis of the stability of IHε
c under the assumption that the (partial) hybrid zero

dynamics IHc|z has a stable periodic orbit has been studied in [28]; the main theorem

from this article will be stated here. The proof was shown for a single domain hybrid

system, which is easily extensible to multi-domain hybrid systems.

Lemma 21. Let Oz be an exponentially stable periodic orbit for the (partial) hybrid zero

dynamics IHc|z (5.77) transverse to S|z. If there exists a domain dependent RES-CLF Vε,v

for the continuous dynamics, then there exists an ε̂ > 0 such that for all 0 < ε < ε̂ and

for all Lipschitz continuous feedback u(ηv, zv) ∈ Kv,ε(ηv, zv), v ∈ V, O = ι0(Oz) is an

exponentially stable periodic orbit of the full order hybrid system IHε
c (5.78).

To put in simple words, Theorem 21 says that for small enough ε > 0, the set of con-

trollers (5.56) renders the full order periodic orbit O exponentially stable. Since Kv,ε,ε̄ ⊂

Kv,ε, Theorem 21 naturally extends to controllers of the form (5.58). Therefore, we need

to show that Kv,ε,ε̄ for each v ∈ V is indeed an input to state stabilizing controller for the

full order periodic orbit O.

We have the following theorem, which is the extension of Lemma 10 to hybrid systems

of the form (5.80).

Theorem 4. Let Oz be an exponentially stable periodic orbit for the hybrid zero dynam-

ics IHc|z transverse to S|z. Existence of a Lipschitz continuous control law, u(ηv, zv) ∈

Kv,ε(ηv, zv), v ∈ V, that exponentially stabilizes O = ι0(Oz) in the hybrid system (4.62),

implies the existence of a Lipschitz continuous control law, u(ηv, zv) ∈ Kv,ε,ε̄(ηv, zv), v ∈

V, that exponentially input to state stabilizes O in the hybrid control system (4.62).

Proof of the above theorem will be shown for two specific kinds of uncertainties in
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Chapters 8 (parameter uncertainty) and 9 (phase uncertainty). In Chapter 7 we will pick

other kinds of uncertainties encountered in bipedal walking robots in detail and analyze the

ISS properties.
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Part III

Bipedal Robots
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CHAPTER 6

HYBRID SYSTEM MODEL OF BIPEDAL ROBOTS

In this chapter, we will discuss a general hybrid model for a bipedal robot. We will also

show methods to obtain control Lyapunov functions via feedback linearization. The walk-

ing robot DURUS, and the running robot DURUS-2D are shown in Fig. 6.7. The robot

with pointed feet AMBER1 is shown in Fig. 6.1. The robot with feet used to realize dy-

namically stable dancing (see Fig. 10.1) is shown in Fig. 6.3. AMBER1 is modeled as a

simple hybrid system (single domain, single vector field and a single impact map), while

AMBER2 is modeled as a multi-domain hybrid system that consistes of 10 vertices and 20

edges. The footed robot, DURUS, switches between double support (ds) and single sup-

port (ss) phases, and in the case of running, the robot model consists of stance (s) and flight

(f) phases. Therefore, both DURUS and DURUS-2D are modeled as two domain hybrid

systems, as shown by Fig. 6.8. From Fig. 6.7, the DURUS humanoid has feet that are al-

ways assumed to be flat on ground, while the running robot DURUS-2D has pointed feet

rendering the feet unactuated. More complex versions of locomotion can also be adopted

in DURUS, such as multi contact heel and toe behaviors, which have been studied in [69].

6.1 Robot Model

We will study robot models AMBER1, AMBER2, DURUS 2D and finally the 3D hu-

manoid DURUS.

6.1.1 Model of AMBER1

AMBER1 is a 2D bipedal robot with five links (two calves, two thighs and a torso, see

Fig. 6.1). AMBER1 is 61 cm tall with a total mass of 3.3 kg. The robot has point feet,

and is thus under-actuated at the ankle. In addition, this robot is built for only 2D walk-
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Figure 6.1: The biped AMBER1 on the treadmill.

ing. Since we are modeling walking in AMBER1, the legs alternate between swing (non-

stance) and stance phases. So if the left leg is stance, then the right leg becomes the

swinging (nonstance) leg. For this robot, Q ⊂ RnR denotes the configuration space with

q = (qsf , qsk, qsh, qnsh, qnsk)
T ∈ Q containing the relative angles between the links as

shown in Fig. 6.2. The model constraints are also shown in Fig. 6.2. h(q) is the unilateral

constraint, which is effectively the height of the swinging foot from ground. When the

foot hits the ground, the stance and nonstance legs are swapped. The hybrid model for this

robot can (see [70, 71] for details) be represented by (4.8), which is exactly the formulation

shown in (4.1) except for the absence of the directed graph Γ. This directed graph represen-

tation via vertices and edges is omitted since only one domain and one guard is required.

In other words, there is only one continuous phase and one discrete dynamics (nonstance

foot strike).

For this hybrid system, the domain, guard, reset map and the vector field are given here.

The domain and switching surfaces (guards) are defined w.r.t. h : Q→ R, the height of the

97



z

x x

z

Figure 6.2: The biped AMBER1 (left) and the stick figure showing the configuration angles
(middle) and output constraints (right).

swing foot from ground (see Fig. 6.2).

D = {(q, q̇) ∈ TQ : h(q) ≥ 0}

S = {(q, q̇) ∈ TQ : h(q) = 0, ḣ(q) < 0} (6.1)

∆(x) represents the impact map obtained from the discrete dynamics, and FG = (f, g)

forms the vector field that is obtained from the continuous dynamics. Both the continuous

and discrete dynamics are described below.

Continuous Dynamics. Calculating the inertial properties of each link of the robot (Fig. 6.1)

yields the Lagrangian,

L(q, q̇) =
1

2
q̇TD(q)q̇ − V(q). (6.2)

Explicitly, this is done symbolically through the method of exponential twists (see [72]).

D(q) ∈ Rn×n is the inertia matrix, and V is the potential energy. The inertias of the motors

and boom are also included. Let Ir, Ig, Im be the rotational inertias of the rotor (reflected),

gearbox, and motor, respectively. Then, Im = Ir + Ig. Because Ir is large, Ig can be

ignored. Each joint is connected to a motor through a metal chain. Therefore, the axis of

rotation of the rotor has an offset w.r.t. that of the link. Using the parallel axis theorem:
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Ip = Im +mmd
2
m, where Ip is the motor inertia shifted to the joint axis, mm is the mass of

the rotating motor parts, and dm is the distance between axes. Again, sincemm = 0.011 kg,

Ip ≈ Im.

The combined inertia matrix, Dcom, used in the Lagrangian is

Dcom(q) = D(q) + diag(0, Im,sk, Im,sh, Im,nsh, Im,nsk), (6.3)

where Im,sk, Im,sh, Im,nsh, Im,nsk represent the motor inertias of the links. The Euler-

Lagrange equation yields a dynamic model

Dcom(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (6.4)

where the control, u ∈ RmR , is a vector of torque inputs. C(q, q̇) ∈ RnR×nR is the matrix

of Coriolis-centrifugal terms, G(q) ∈ RnR is the gravity vector. B ∈ RnR×m is the torque

mapping consisting of 1′s and 0′s with B(1, 1) = 0. Without loss of generality, it can be

assumed that the mapping B is one to one from the torque input u to the corresponding

joints. Since AMBER1 has DC motors, we need to derive equations with voltage inputs.

Since the motor inductances are small, we can realize the electromechanical system

vin = Raia +Kωω, (6.5)

where vin is the vector of voltage inputs to the motors, ia is the vector of currents through

the motors, and Ra is the resistance matrix. Since the motors are individually controlled,

Ra is a diagonal matrix. Kω is the motor velocity constant matrix and ω is a vector of

angular velocities of the motors. Representing (6.5) in terms of currents, the applied torque

is u = KϕR
−1
a (vin−Kωω), with Kϕ the torque constant matrix. Thus, the Euler-Lagrange
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equation takes the form

Dcom(q)q̈ + C(q, q̇)q̇ +G(q) = BKϕR
−1
a (vin −Kωω). (6.6)

Converting this model to first order ODEs yields the affine control system (f, g) with inputs

vin:

f(q, q̇) =

 q̇

−D−1
com(q)(C(q, q̇)q̇ +G(q) +BKϕR

−1
a Kω q̇)

 ,
g(q) =

 0

D−1
com(q)BKϕR

−1
a

 . (6.7)

Discrete Dynamics. When the nonstance foot impacts the ground, the angular velocities

change. Hence we define a reset map (switching map), ∆ : S → D\S, which maps the

pre-impact state to the post-impact state. This reset map has two components: one is the

impact velocity map, ∆q̇ (given the pre-impact velocities, the post-impact velocities will

be ∆q̇(q)q̇), and the other one is the relabeling matrix, ∆q, which swaps the “stance” and

“nonstance” legs. The reset map ∆ is given by

∆ : S→ D, ∆(q, q̇) =

 ∆qq

∆q∆q̇(q)q̇

 . (6.8)

∆q updates the configuration q at impact (by appropriately changing the labels). ∆q̇ is

obtained as follows. Let (px(q), pz(q)) be the position of the nonstance foot. pnsx denotes

the x horizontal distance from stance foot, and pnsz denotes the vertical distance from stance
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foot. We have the Jacobian of these positions as

J =

∂pnsx∂q
∂pnsz
∂q

 . (6.9)

Given the pre-impact velocity q̇−, the post-impact velocity q̇+ is obtained from the follow-

ing

Dcom −J T

J 0


 q̇+

δFimp

 =

Dcomq̇
−

0

, (6.10)

where δFimp is the set of impulsive forces acting from the ground, J is obtained from (6.9).

After obtaining the q̇+, relabeling is done to obtain the switching (reset) map. More details

are provided in [73].

Trajectory tracking. Walking is generally achieved by realizing a set of reference trajec-

tories for each joint actuator. We can define the desired trajectories for a set of k outputs

y : Q→ Rk for AMBER1.

• The linearization of the x-position of the hip, phip, given by:

δphip(q) = Lc(−qsf ) + Lt(−qsf − qsk), (6.11)

where Lc, Lt are the calf and thigh lengths, respectively.

• Linearized slope of the nonstance leg, mnsl (the tangent of the angle between the

z-axis and the line on the nonstance leg connecting the ankle and hip), given by:

δmnsl(q) = −qsf − qsk − qsh + qnsh + qnskLc/(Lc + Lt). (6.12)

• qsk, the stance knee angle.

101



• qnsk, the nonstance knee angle.

• qtor(q), the torso angle from vertical

qtor(q) = qsf + qsk + qsh. (6.13)

These outputs are shown in Fig. 6.2.

Since, AMBER1 is under-actuated, we have only four motors to control. Therefore,

the number of outputs that we can control is limited by the degree of under-actuation.

Of course, in the case of robots like AMBER2 where the under-actuation also depends

on the domain the robot is operating (for example, double support has over actuation in

AMBER2), the outputs picked change in every phase. Therefore, we pick four relative

degree outputs (k = 4) of AMBER1 and drive them to a set of desired functions.

yd(τ, α) =



yH(τ, αsk)

yH(τ, αnsk)

yH(τ, αnsl)

yH(τ, αtor)


, ya(q) =



qsk

qnsk

δmnsl(q)

qtor(q)


(6.14)

where yH(t, αi), i ∈ {sk, nsk, nsl, tor, nsf} contains the parameters αi specific to the

output. They are obtained from an offline optimization problem to obtain a realizable

reference walking gait. See [74] for more details. yH are called human functions, obtained

via the human-inspired gait optimization [70], and consist of sines and cosines

yH(t, α) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5. (6.15)

The modulation of the desired trajectories are modulated by the phase variable τ , either
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via time or via the under-actuated coordinates. Specifically, we use the following

τ(q) =
δphip(q)− δphip(q+)

vhip

, (6.16)

where δphip(q+) is the linearized position of the hip at the beginning of a step. q+ is the

configuration where the height of the nonstance foot is zero, i.e., h(q+) = 0. vhip is some

constant. Using (6.16), we define the final form of the outputs, which is the difference

between the actual and desired outputs

y(q) = ya(q)− yd(τ(q), α). (6.17)

We use feedback linearizing controller to drive these outputs to zero. More on the

trajectory tracking control law and its ensuing uncontrolled dynamics will be discussed in

Chapter 6, Section 5.1 and Chapter 5.

6.1.2 Model of AMBER2

AMBER2 is a 2D bipedal robot with seven links (two calves, two thighs, two feet and a

torso, see Fig. 6.3) primarily built for obtaining multi-contact walking behavior (see [69]).

This thesis shows work on achieving dynamically stable dancing in AMBER2, as a de-

viation from the traditional walking i.e., nonperiodic behaviors. AMBER2 is the second

generation of robots that was built in AMBER Lab and is an expansion upon its predeces-

sor, AMBER1 (Fig. 6.1). Unlike AMBER1, AMBER2 was designed to walk in a circle

around a pivot connected by a boom. Each of the joints are actuated by brushless DC

(BLDC) motors. The drives are remotely connected to the stationary power supply with

the help of slip rings. The joint angles of the robot are measured by absolute incremental

optical encoders.

Due to the changes of contact points on the foot throughout the course of the dance,

generalized coordinates are naturally used to characterize the robot. Specifically, the con-
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Figure 6.3: The bipedal robot AMBER2 (left) is constructed with the specific goal of multi-
contact behavior as indicated by the design of the feet (right).

x

z

Figure 6.4: Robot configuration (left) and outputs (right).

figuration space Q = R2×SO(2)×Qb ∈ RnR is represented in coordinates as q = (q0, qb),

where the extended coordinate q0 represent the rotation angle of the body fixed frame Rb

with respect to a fixed inertial frame R0; here qb = (qsa, qsk, qsh, qnsh, qnsk, qnsa) denotes

the body coordinates of the robot as shown in Fig. 6.4. Note that the translational coordi-

nates psx, p
s
z are also shown, which are not included in the dynamics since the stance toe is

assumed to be pinned to ground throughout the course of dancing. For AMBER2, nR = 9,

Qb ⊂ R6 and q ∈ R9, and the number of actuators k = 6.
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Similar to AMBER1, we can model AMBER2 as a hybrid system, but with more than

one domain, vector field and reset map. The directed graph Γ will have 8 vertices and 42

edges based on Fig. 4.3. We have the set of vertices

V = {DHL,FTBH,UA,FTL,FHL,FF, S,BHL} (6.18)

We will pick only two domains (see Fig. 6.5) will be described here to give the basic notion.

We can define the contact points C = {st, sh, nst, nsh} corresponding to stance toe, stance

heel, nonstance toe and nonstance heel respectively. The heights hc, c ∈ C will correspond

to the heights of the respective contact points. By fixing the contact point st to ground the

number of possible contact conditions for the remaining three is 23 (that is why 8 domains

in Fig. 4.3). For the two domains in Fig. 6.5: back hell lift (BHL) and swing (S), we have

the following representation

DBHL = {(q, q̇) ∈ R2nR |hnsh ≥ 0,


hst

hsh

hnst

 = 0},

DS = {(q, q̇) ∈ R2nR |

hnst

hnsh

 ≥ 0,

hst

hsh

 = 0}, (6.19)

and the guards (switching surfaces) determine the states of the robot where the transitions

take place. It is important to note that in the original hybrid model switching happens in

multiple directions, and therefore the guard of each domain is the union of the individual

switching surfaces for each transition. Guard of BHL → S and S → BHL are defined as

follows

SBHL→S = {(q, q̇) ∈ R2nR |hnst = 0, ḣnst > 0, hnsh ≥ 0,

hst

hsh

 = 0}, (6.20)
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BHL S

Figure 6.5: Showing two domains: back heel lift (BHL) and the swing phase (S) with the
two edges.

SS→BHL = {(q, q̇) ∈ R2nR |hnst = 0, ḣnst < 0, hnsh ≥ 0,

hst

hsh

 = 0}. (6.21)

Union of the source of the individual edges emanating from each domain is SS =
⋃

v∈V
SS→v,

where the set of vertices are given by (6.18). Note that the execution of this hybrid system

is done by using a time based control law (see [75]). More on this is discussed in Chapter

10.

Continuous Dynamics. The Lagrangian dynamics for this nR-DOF robot is similar to that

of AMBER1 (6.4) with the inclusion of floating base degrees of freedom. With the multiple

foot behaviors that can be realized, we know that the feet cannot go below ground. The

dynamics need to be realized through the use of holonomic constraints, which constrain

both heel and toe of the nonstance foot whenever they are in contact with ground. These

holonomic constraints are enforced in the following manner.

D(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u+ J T
shFsh + J T

nstFnst + J T
nshFnsh, (6.22)

where Ji(q) is the Jacobian of specific contact points i ∈ C corresponding stance heel,

nonstance toe and nonstance heel respectively. Fi(q, q̇), which are the reaction forces due

to the holonomic constraints, are defined for each domain based on the contact conditions

of the heel and toe. Note that Fi = 0 if there is no contact with ground. Fi can be explicitly

derived from the states x and the controller u by differentiating the holonomic constraints
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twice. The details are omitted here and can be found in [72]. If Fnst = 0 and Fnsh = 0, then

a fully actuated condition of the robot is realized. Otherwise, an over-actuated condition is

achieved. We will denote JA =


Jsh

Jnst

Jnsh

 and FA =


Fsh

Fnst

Fnsh

.

Discrete Dynamics. The discrete dynamics is obtained similar to AMBER1. See (6.10)

for more details.

Trajectory tracking. The trajectories achieved to realize dynamic dancing are time based

in nature. Therefore, we will choose time based desired trajectories for this application.

Due to presence of feet, AMBER2 has more actuators compared to AMBER1. In addition,

the behavior of the feet are affected by interactions with ground. Therefore, we have outputs

designed based on if both the feet are on ground (double support ds) or just one foot (single

support ss). We have outputs defined separately for single support and double support

domains.

yass(q) =



qsk

qnsk

qhip(q)

qtor(q)

qnsf (q)


, ydss(τ, αss) =



yH(τ, αsk)

yH(τ, αnsk)

yH(τ, αhip)

yH(τ, αtor)

yH(τ, αnsf )


, (6.23)

where the actual outputs are redefined with the inclusion of ψ0 (Fig. 6.4)

δphip(q) = −(Lc + Lt)(ψ0 + qsk + qsa)− Ltqsk,

qhip(q) = qnsh − qsh,

qtor(q) = ψ0 + qsa + qsk + qsh,

qnsf (q) = ψ0 + qsa + qsk + qsh − qnsh − qnsk − qnsa. (6.24)
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The outputs for the double support domain are

yads(q) =

 qsa

yass(q)

 , ydds(τ, αds) =

 yH(τ, αsa)

ydss(τ, αds)

 . (6.25)

The phase variable, which modulates the walking functions yH (from (6.15)), is a function

of time τ(t). To drive the outputs ya to yd, we use time based feedback linearization.

6.1.3 Model of DURUS Humanoid

DURUS is a 23 DOF robot, consisting of fifteen actuated joints throughout the body. There

is one linear passive spring at the end of each leg. The generalized coordinates of the robot

are described in Fig. 6.6 (see [64]); the continuous dynamics of the bipedal robot is given

by the following:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ J T
W (q)FW , (6.26)

JW (q)q̈ + J̇W (q, q̇)q̇ = 0, (6.27)

where JW (q) are the Jacobian of the contact constraints of the feet, and FW are the associ-

ated contact wrenches. The constraints are on the position of the feet and their angles with

ground. Other terms in the EOM have the usual meaning as in (6.22). Assumptions on the

model are the same as that for AMBER1,AMBER2, such as D(q) is invertible, B is one-

to-one mapping from the actuators to joints. The nonsingulariry assumption of D(q) can

be utilized to obtain Lipschitz continuity property of the vector fields, which will be impor-

tant to prove stability results in Chapters 7-9. Due to the presence of passive springs, the

double-support domain becomes more prominent compared to AMBER1. A two-domain

hybrid system model is utilized to model DURUS walking, where a transition from double

support (ds) to single support (ss) domain takes place when the normal force on nonstance

foot reaches zero, and a transition from single support to double support domain occurs
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Figure 6.6: DURUS robot designed by SRI International.

when the nonstance foot strikes the ground [64]. Since there is no impact while transition-

ing from double-support to single-support, the discrete map is an identity. The holonomic

constraints are defined in such a way that feet are flat on the ground when they are in con-

tact with the ground. In addition, DURUS is supported by a linear boom, which restricts

the motion of the robot to the sagittal plane. The contacts with the boom are also modeled

as holonomic constraints.

The hybrid control system model (in the form of (4.1)) for this robot is described here.

• We can define two vertices and edges as: VW = {ss, ds} , EW = {ss→ ds, ds→ ss}

forming the directed graph ΓW = (VW ,EW ). A pictorial representation of Γ for

DURUS humanoid is provided with the directed graph for DURUS-2D in Fig. 6.8.
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• The domains are described below:

Dss = {(q, q̇, u) ∈ R2nR × RmR |hs = 0, hns ≥ 0},

Dds = {(q, q̇, u) ∈ R2nR × RmR |hs = 0, hns = 0, F ns
W ≥ 0}. (6.28)

Here h� denotes the height of the contact points specified by � ∈ CW = {s, ns}.

F ns
W is the vertical ground reaction force acting on the nonstance foot.

• By selecting the domains as in (6.28), we have the guards

Sss→ds = {(q, q̇, u) ∈ R2nR × RmR |hs = 0, hns = 0, ḣns < 0},

Sds→ss = {(q, q̇, u) ∈ R2nR × RmR |hs = 0, hns = 0, , F ns
W = 0}. (6.29)

• U is the set of admissible controls, and is generally the set of allowable torque inputs

for the robot. CLFs are defined from this set and it is assumed that this set is large

enough for feasibility.

• There is no impact from double support to single support phase, so ∆ds→ss is an

identity map as mentioned before. The map ∆ss→ds : Sss→ds → Dds is obtained by

using the impact model obtained from the discrete dynamics.

∆ss→ds(q, q̇) =

∆q 0

0 ∆q∆q̇(q)


q
q̇

 . (6.30)

• FG is obtained from (6.26) by representing x = (q, q̇).

Trajectory tracking. We pick joint angles that are normal to the sagittal plane, e.g., com-

manding zero position to all roll and yaw joints. In particular, we define a relative degree
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one output as

y1(q) = δṗhip(q)− vhip, (6.31)

where vhip is a constant (typically a desired hip velocity), δphip(q) is the linearized hip

position picked similar to (6.24),

δphip(q)=Laθra + (La + Lc)θrk + (La + Lc + Lt)θrh, (6.32)

with La, Lc, and Lt the length of ankle, calf, and thigh link of the robot respectively. The

relative degree two outputs are defined in the following (assuming right leg is the stance

leg)

• stance knee pitch: ya,skp
2 = θrk,

• stance torso pitch: ya,stp2 = −θra − θrk − θrh,

• waist pitch: ya,wp
2 = θw,

• non-stance knee pitch: ya,nskp
2 = θlk,

• non-stance foot pitch: ya,nsfp
2 = pnstz (q)− pnshz (q),

• non-stance slope:

ya,nsl
2 = −θra − θrk − θrh +

Lc
Lc + Lt

θlk + θlh,

where pnstz (q) and pnshz (q) are the height of nonstance toe and heel respectively. To

guarantee that the non-stance foot remains flat, the desired non-stance foot pitch output

should be zero. Correspondingly, the desired outputs y2
d(τ, α) are defined as 6th-order

Bézier polynomials, where τ is the phase variable, which can be either time based or state

based. The state based phase variable τ(q) is the same as (6.16). The combined outputs

of the system are defined as ya(q) = [ya1 , y
a
2
T ]T and yd(τ, α) = [vhip, y

d
2(τ, α)

T
]T . We use

time based feedback linearization to drive the actual outputs to the desired outputs.
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Figure 6.7: The spring-legged planar running biped, DURUS-2D.

6.1.4 Model of DURUS-2D

DURUS-2D is a 11 DOF planar bipedal robot (Fig. 6.7) a predecessor of the DURUS

humanoid robot. The primary goal of this robot was to realize stable walking gaits with

compliance. After successively achieving walking [76], the next natural step was to achieve

more complex behaviors. With the objective of achieving running, the hybrid system run-

ning model is developed. DURUS-2D has two springs on the feet that are pointed. There-

fore, DURUS-2D has a high degree of under-actuation with two phases: stance s and flight

f. Besides, since the objective is to achieve running, the actuators need to operate at high

velocities to get the desired high speed. The continuous dynamics for DURUS-2D is the

same as for DURUS humanoid (as given by (6.26)) except for the Jacobian of the con-

straints

JR =

Js

Jns

 , (6.33)

where Js,Jns corresponds to the Jacobian of the stance and nonstance foot respectively.

The hybrid system model of DURUS-2D is described here
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• The directed graph has the vertices and edges as: VR = {s, f} , ER = {s→ f, f → s}.

A pictorial representation of this directed graph is given in Fig. 6.8.

• The domains are described below.

Ds = {(q, q̇) ∈ R2nR |hs = 0, hns > 0},

Df = {(q, q̇) ∈ R2nR |hs > 0, hns ≥ 0}. (6.34)

Here h� denotes the height of the contact points specified by � ∈ CR = {s, ns}.

An alternative definition of the domain can also be obtained by using the holonomic

constraints hv : Q→ Rl wherein the position and orientation of the contact points C

are fixed.

• By choosing the domains as in (6.34),

Ss→f = {(q, q̇) ∈ R2nR |hs = 0, hns > 0, ḣs > 0},

Sf→s = {(q, q̇) ∈ R2nR |hs > 0, hns = 0, ḣns < 0}. (6.35)

• Similar to the DURUS humanoid, there is no impact from double support to single

support phase, so ∆s→f is an identity map. The map ∆f→s : Sf → Ds is obtained by

using the impact model obtained from the discrete dynamics.

Other elements of (4.1) are obtained similar to that of DURUS.

6.2 Robot Tracking and Control

We now can describe the trajectory tracking controllers for AMBER1, AMBER2, DURUS

and finally the running robot DURUS-2D here. Assuming v ∈ V with the vertex set taking

the specific forms for each robot, we can define the feedback control laws for each vertex
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Figure 6.8: Hybrid system model for the walking robot DURUS (left) and for the running
robot DURUS 2D (right).

(domain). We choose a general EOM of the form

D(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)u+ J T
� F�, (6.36)

where � ∈ {A,W,R}, which corresponds to the holonomic constraints of AMBER2 (6.22)

or DURUS or DURUS-2D (6.26). Accordingly, we have the dynamics represented in terms

of the state x = (q, q̇).

ẋ = f(x) + g(x)u

f(x) =

 q̇

D−1(q)(−C(q, q̇)q̇ −G(q) + J T
� F�)

 , g(x) =

 0

D−1(q)B

 . (6.37)

6.2.1 Computed Torque

We will utilize the method of computed torque since it is highly effective for robotic sys-

tems [77]. It is also convenient in the context of uncertain models, which will be studied

in Chapter 8. Given relative degree one and two outputs y1, y2, we have the following
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derivatives

ẏ1 =
∂y1

∂q̇
q̈ +

∂y1

∂q
q̇

ÿ2 =
∂Lfy2

∂q̇
q̈ +

∂Lfy2

∂q
q̇. (6.38)

we therefore denote the Jacobians

Jy :=

 ∂y1
∂q̇

∂Lfy2
∂q̇

 , J̇y :=

 ∂y1
∂q

∂Lfy2
∂q

 . (6.39)

It can be observed that for relative degree two outputs ∂Lfy2
∂q̇

= ∂y2
∂q

.

Since the number of outputs is less than the degrees of freedom, k < nR, we add nR − k

rows to Jy and J̇y to make the co-efficient matrix of q̈ in (6.38) full rank. These rows

correspond to the configuration that are under-actuated resulting in


0

ẏ1

ÿ2

 =

 D1

Jy

 q̈ +

 H1

J̇y q̇

 , (6.40)

where H1 is the first nR− k rows of H(q, q̇) = C(q, q̇)q̇+G(q) +J T
� F�, � ∈ {A,W,R},

and D1 is the first nR − k rows of the inertia matrix, D(q). These rows correspond to the

under-actuated degrees of freedom of the robot (corresponding to zero rows of the torque

map B). It should be observed that since the under-actuated degrees of freedom have zero

torque being applied, the resulting EOM of the robot leads to zero on the left hand side of

(6.40), and hence the choice of rows. Accordingly, we can define the desired acceleration
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for the robot to be:

q̈d =

 D1

Jy


−1

 0

µ

−
 H1

J̇y q̇


 , (6.41)

where µ is a linear control input. The resulting torque controller that realizes this desired

acceleration in the robot can be defined as:

Bu = D(q)q̈d + C(q, q̇)q̇ +G(q). (6.42)

6.2.2 Feedback Linearization ≡ Computed Torque

Here we will show that the controllers feedback linearization and computed torque are

both equivalent even for under-actuated systems. For partially observable systems, there

are ways to apply feedback linearization as long as the number of outputs is equal to the

number of actuators (m = k). It is also possible to extend this I/O control approach even

for non-square systems via control Lyapunov functions.

Lemma 22. Substituting (6.42) and (6.41) in (6.36) results in linear dynamics

ẏ1

ÿ2

 = µ (6.43)

Proof. Substituting (6.42), (6.41) in (6.36) results in

D(q)q̈ + C(q, q̇)q̇ +G(q) = D(q)q̈d + C(q, q̇)q̇ +G(q)

=⇒ q̈ =

 D1

Jy


−1

 0

µ

−
 H1

J̇y q̇


 . (6.44)
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Therefore, we have the following

 D1

Jy

 q̈ +

 H1

J̇y q̇

 =

 0

µ


=⇒

ẏ1

ÿ2

 = µ. (6.45)

µ can be chosen to therefore stabilize the y dynamics. We will utilize a CLF based

controller to achieve this goal.

6.3 ISS-CLFs for Bipedal Walking

In this section we will analyze the classes of RES-CLFs and Re-ISS-CLFs constructed

from Chapter 5 on the bipedal robot DURUS (see Fig. 6.6). For verification of the im-

proved stabilizing results presented by input to state stabilizing controllers, we simulate a

humanoid robot under various disturbances and observe improvements of the stability of

the gait. The robot under study is DURUS, a 23 DOF robot, consisting of fifteen actuated

joints and one linear passive spring at the end of each leg. The generalized coordinates of

the robot are described in Fig. 6.6 (see [64]) and the continuous dynamics of the bipedal

robot is given by (6.26). The nominal walking gait in this simulation study has two phases:

single support, and double support, as shown in Fig. 6.8. A stable reference walking gait is

obtained and verified via an offline optimization algorithm. Therefore, based on Theorem

2 of [28], there is a small enough ε (observed to be ≤ 0.2) that makes the hybrid periodic

orbit exponentially stable. It is important to note that the torque requirements increase with

the decrease in ε.

The main objective of performing a perturbation analysis is to test the stability of the

walking gait under uncertainties that are as realistic as possible. Therefore, we set torque
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limits of 250Nm for each joint and apply a modeling error of 10% to the mass-inertial

properties of the robot. Specifically the modeling error was enforced on the mass, center of

mass and inertial properties of each link. It is assumed that other properties such as links

lengths and spring constants are accurate. The stabilizing controller chosen for simulation

is IO linearization (as given by (5.5))

uIO =

 Lgy1,v

LgLfy2,v


−1−

Lfy1,v

L2
fy2,v

+

 −1
ε
y1,v

−2
ε
Lfy2,v − 1

ε2
y2,v


 .

The input to state stabilizing controller chosen was (as given by (3.8))

uISS = uIO −
1

ε̄
LgV

T .

where the Lyapunov function V (ηv) = ηTv Pε,vηv. Pε, depends on ε, is the solution to the

CARE: F TPε + PεF − 1
ε
PεGG

TPε + 1
ε
Qε (see equation (47) of [28]).

Two test cases were chosen: lateral push force to the hip for a duration of 0.1s at the

beginning of the single support domain, and stepping onto an unknown ground height.

Table 6.1 shows the comparison for the push force recovery between uIO and uISS for

different values of ε, ε̄. It can be observed that with uISS the robot can handle greater

push forces. With lower ε, the stability of the robot is affected (due to 10% model error

and torque saturations) resulting in poorer performance for ε = 0.05. On the other hand,

Fig. 6.9 shows that the convergence improves as ε̄ is lowered. Fig. 6.10 shows the Lyapunov

function comparisons for the push recovery. Fig. 6.11 and Fig. 6.12 show the comparisons

for unknown step over different heights. Fig. 6.13 shows tiles of push recovery (top) and

stepping over (bottom) for an ISS controller. A video link demonstrating the simulations

performed on the robot is given in [1].
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Table 6.1: Comparison of maximum recoverable push forces in lateral direction. The ISS
based controller can handle greater pushes. Also reducing ε leads to instability due to the
constraints on model uncertainty and torque limits.

Maximum
Controller IO Gain (ε) Allowable Push (N)

0.2 380
IO 0.1 420

0.05 395
ISS 0.2 380

(ε̄ = 0.1) 0.1 435
0.05 410

ISS 0.2 435
(ε̄ = 0.01) 0.1 435

0.05 405
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Figure 6.9: Comparisons of the Lyapunov function for various values of ε̄ for push recov-
ery. The push force was 350N. The convergence is quicker for decreasing ε̄. The jumps are
due to discrete events (impacts).
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Figure 6.10: Push recovery comparison via the Lyapunov functions for IO (a) and ISS (b)
based controllers. ε = ε̄ = 0.1. The convergence rate is preserved for ISS-CLF.
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Figure 6.11: Step over comparison via Lyapunov functions for IO (a) and ISS (b) based
controllers. ε = ε̄ = 0.1. The convergence rate is preserved for ISS-CLF.
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Figure 6.12: Walking over 5cm step height. Phase portraits for vertical z position of the
torso base are shown here. The ISS based controller shows a much smaller deviation.
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Figure 6.13: The top tiles show push recovery and the bottom tiles show stepping onto an
unknown disturbance for an ISS controller. Push force of 350N is enforced (second tile)
for 0.1s and the reactions are seen in tiles 3 and 4.
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CHAPTER 7

DYNAMICS OF UNCERTAINTY

In this chapter, we will study how to model some of uncertainties in the dynamics of the

system. In other words, we will analyze some of the prominent input uncertainties d in

detail and find ways to explicitly represent them in a case by case basis. We will analyze

hybrid systems with a single domain and single resetmap for convenience (they can all be

easily extended to multi-domain hybrid systems) except for the last section of this chapter

(Section 7.6), which includes multiple domains.

7.1 Linear Feedback Laws

We will use some of the ideas taken from [78], which showed that PD control renders a

robotic system integral input to state stable. By assuming full actuation (B to be square

and full rank, nR = mR), we will choose a particular control law

u = −Kp(q − qd)−Kd(q̇ − q̇d), (7.1)

Kp, Kd are constant gain matrices, and qd, q̇d are constant desired velocities. Substituting

for this control input in the EOM (6.22) yields

D(q)q̈ + C(q, q̇)q̇ +G(q) = −BKp(q − qd)−BKd(q̇ − q̇d) (7.2)

=⇒ q̈ = −D−1(q) (C(q, q̇)q̇ +G(q))−D−1(q)BKp(q − qd)−D−1(q)BKd(q̇ − q̇d),

where the inertia matrix D(q) is assumed to be positive definite.

By denoting the disturbance input d(q, q̇) := −C(q, q̇)q̇−G(q), we have the following
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outputs

y = q − qd, (7.3)

and the following output dynamics

Lfy = q̇ − q̇d

L2
fy = −∂q̇d

∂q
q̇ +

(
1− ∂q̇d

∂q̇

)
(−D−1(Cq̇ +G))

LgLfy = D−1B − ∂q̇d
∂q̇

(D−1B). (7.4)

Denoting J = ∂y
∂q

= 1− ∂q̇d
∂q̇

, we have

ẏ
ÿ

 =

 0 1

−JD−1BKp −JD−1BKp


︸ ︷︷ ︸

A

y
ẏ

+

0
1

 L2
fy︸︷︷︸

=:d

. (7.5)

Since the inertia matrix D is positive definite, its maximum and minimum eigenvalues

are both positive. Therefore, if we assume J is bounded, it is possible to tune the matrices

Kp, Kd such that the matrixA is Hurwitz. It can be easily seen that the signs of q−qd do not

change even after the multiplication of the matrices Kp, D
−1(q). Under a zero disturbance,

it can be observed that (7.12) results in an almost linear dynamics (subject to perturbations

of J (q), D−1(q)). By appropriately tuning Kp, Kd and also appropriately selecting qd, it is

possible to realize stability of this almost linear system.

This can be easily extended to under-actuated systems, in which the number of outputs
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reduces to equal the number of actuators y : RnR → RmR :

y(q) = ya(q)− yd(q)

Lfy(q, q̇) = J (q)q̇

L2
fy(q, q̇) =

∂J q̇
∂q

(q, q̇)q̇ + J (q)(−D−1(q)(C(q, q̇)q̇ +G(q)))

LgLfy(q, q̇) = J (q)D−1(q)B. (7.6)

A convenient feedback control law that can be applied is u = −Kpy −KdLfy, where

the gain matrices Kp, Kd ∈ Rm×m are appropriately tuned. Note that extension to under-

actuated systems is possible as long as the zero dynamics is stable. An application is

AMBER1 where n = 5, k = 4. Simulation results are shown in Fig. 7.1 and Fig. 7.2.

Fig. 7.1 shows the results for d = 0 and Fig. 7.2 shows the results for d ≈ 0, a bounded

disturbance. It can easily checked that the resulting implementation is d to y stable. In other

Time(s)
0 2 4 6 8 10 12

S
ta
n
ce

k
n
ee

(r
a
d
)

-0.15

-0.1

-0.05

0

0.05

0.1

Time(s)
0 2 4 6 8 10 12

N
o
n
st
a
n
ce

k
n
ee

(r
a
d
)

-0.1

-0.05

0

0.05

0.1

Time(s)
0 2 4 6 8 10 12

S
ta
n
ce

h
ip

(r
a
d
)

-0.1

-0.05

0

0.05

0.1

0.15

Time(s)
0 2 4 6 8 10 12N

o
n
st
a
n
ce

h
ip

(r
a
d
)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 7.1: Figures showing the output errors going to zero for a zero disturbance.
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Figure 7.2: Figures showing the outputs showing boundedness under a bounded uncer-
tainty.

words, if d = 0, then |y| → 0, and if ‖d‖∞ is bounded, the outputs y are also bounded.

Linear feedback laws laws are implemented in all the robots shown in Fig. 1.4. Walking

was implemented in AMBER1, PROXI, DURUS humanoid, running was implemented in

DURUS-2D, and dynamic robotic dancing was implemented in AMBER2. It is important

to note that this construction is extensible to under-actuated hybrid systems under hybrid

invariance conditions (satisfied because the impact dynamics are solely dependent on the

inertia matrix D(q)). Hybrid invariance conditions and the resulting hybrid zero dynamics
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were discussed in detail in 5.3.2.

7.2 Proportional Voltage Control

We choose the vector fields f, g of the form (6.7) and based on the control law used in [79],

we construct the EOM. Assume that the robot is fully actuated (nR = mR), i.e., B is full

rank. We therefore have

ẋ = f(x) + g(x)(−Kp(q − qd)) (7.7)q̇
q̈

 =

 q̇

−D−1
com(Cq̇ +G+BKϕR

−1
a Kω q̇)−D−1

comBKϕR
−1
a Kp(q − qd)


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Figure 7.3: Figures showing the progression of the outputs for zero disturbance.
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Figure 7.4: Figures showing the progression of the outputs for a bounded disturbance.

Consider the following output

y = q − qd

Lfy = q̇ − q̇d

L2
fy = −∂q̇d

∂q
q̇ +

(
1− ∂q̇d

∂q̇

)
(−D−1

com(Cq̇ +G+BKϕR
−1
a Kω q̇))

LgLfy = D−1BKϕR
−1
a −

∂q̇d
∂q̇

(D−1BKϕR
−1
a ). (7.8)
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Figure 7.5: Figures showing the comparison between the voltage inputs obtained in simu-
lation and experiment. The gap is less than 15V .

This construction is similar to the construction shown in 7.1, in which the input is the

torque instead of the voltage with an extra term that stabilizes the joint velocities.

Denoting again

J = 1− ∂q̇d
∂q̇

, (7.9)

which is a function of qd, we have the following resulting equation after applying u =
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−Kpy:

ẏ
ÿ

 =

 0 1

−JD−1
comBKϕR

−1
a Kp 0


y
ẏ


︸ ︷︷ ︸

A

+

0
1

 L2
fy︸︷︷︸

=:d

(7.10)

By reformulating the disturbance d, we can include the term JD−1
comBKϕR

−1
a rKω q̇ (from

the expression L2
fy in (7.8)) in the matrix A to yield

d := −∂q̇d
∂q

q̇ + J (−D−1
com(Cq̇ +G+BKϕR

−1
a Kω q̇d)), (7.11)

where JD−1
comBKϕR

−1
a Kω q̇d is added and subtracted. Therefore, (7.10) can be rewritten
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Figure 7.6: Figures showing the comparison between the simulated and the experimental
joint angles. The maximum difference is close to 0.2rad.
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as ẏ
ÿ

 =

 0 1

−JD−1BKϕR
−1
a Kp −JD−1BKϕR

−1
a Kω


︸ ︷︷ ︸

A

y
ẏ

+

0
1

 d. (7.12)

The proportional voltage controller used resulted in the dynamics of the form (7.12). As

long as the matrix A is Hurwitz, the resulting system under hybrid invariance is d to y

stable.

A similar formulation can be implemented for under-actuated systems. This propor-

tional voltage control formulation, u = −Kpy, was implemented in AMBER1. The simu-

lation results are shown in Fig. 7.3 and Fig. 7.4. Hurwitz property is achieved by appropri-

ately adjusting the gains of Kp. Experimental results are shown in Fig. 7.5 and Fig. 7.6, in

which the maximum input difference was close to 15V and the resulting maximum tracking

error was close to 0.2rad. Videos of AMBER1 walking are given in [2, 3].

7.3 Model Based Controllers

For fully actuated systems (nR = mR), if we assume that the parameters of the robot such

as COM position, mass, inertia, are unknown, then the computed torque controller (6.42)

yields

D(q)q̈ + C(q, q̇)q̇ +G(q) = D̂(q)q̈d + Ĉ(q, q̇)q̇ + Ĝ(q), (7.13)

where theˆover the symbols indicate that the assumed model was used. Therefore, we can

study the resulting dynamics under parameter uncertainty as follows.

D(q)q̈ + C(q, q̇)q̇ +G(q) = (D̂(q)−D(q))q̈d + (Ĉ(q, q̇)− C(q, q̇))q̇ + (Ĝ(q)−G(q))︸ ︷︷ ︸
=:d

· · ·+D(q)q̈d + C(q, q̇)q̇ +G(q), (7.14)
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which results in the following:

D(q)q̈ = D(q)q̈d + d. (7.15)

The objective is to drive the configuration q and velocity q̇ of the robot to some desired

values via CLFs. We know that if d ≡ 0, we can construct CLFs via feedback linearization.

Representing the dynamics in terms of the outputs, we have

y(q) = q − qd(q)

ẏ(q, q̇) = J (q)q̇, J (q) =
∂y

∂q

ÿ(q, q̇) = J (q)(q̈d +D−1(q)d(q, q̇)) + J̇ (q, q̇)q̇ (7.16)

The desired acceleration, q̈d, can be appropriately chosen: q̈d = J −1(µ − J̇ q̇). µ ∈ RnR

is the auxiliary control input. Note that q̈d is not dependent on the model. The following

linear dynamics can be obtained

ẏ
ÿ

 =

0 1n×n

0 0


︸ ︷︷ ︸

F

y
ẏ

+

 0

1n×n


︸ ︷︷ ︸

G

µ. (7.17)

Consider the following candidate Lyapunov function:

V (q, q̇) :=

 q − qd(q)

q̇ − q̇d(q, q̇)


T

P

 q − qd(q)

q̇ − q̇d(q, q̇)

 , (7.18)

where P is the solution to the continuous algebraic Ricatti equation (CARE):F TP +PF −

PGGTP +Q = 0, where Q > 0 is some positive definite matrix. It can be verified that V

is a valid CLF if µ is picked accordingly. In fact, it is an ES-CLF because of the linearized
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system. It can be explicitly written as

λmin(P )|(q − qd, q̇ − q̇d)|2 ≤ V (q, q̇) ≤ λmax(P )|(q − qd, q̇ − q̇d)|2, (7.19)

inf
µ∈Rn

[LFV (q, q̇) + LGV (q, q̇)µ+
λmin(Q)

λmax(P )
V (q, q̇)] ≤ 0.

Based on Lemma 10, we have the corresponding ISS-CLF as

λmin(P )|(q − qd, q̇ − q̇d)|2 ≤ V (q, q̇) ≤ λmax(P )|(q − qd, q̇ − q̇d)|2, (7.20)

inf
µ∈Rn

[LFV (q, q̇) + LGV (q, q̇)µ+
λmin(Q)

λmax(P )
V (q, q̇) +

1

ε̄
LGV (q, q̇)LGV (q, q̇)T ] ≤ 0.

It must be noted that the resulting dynamics is e-ISS with the input being the uncertainty

d, which is also a function of the desired acceleration q̈d. It is even more important to note

that LFV , LGV are Lie derivatives w.r.t the fields obtained from (7.15), which have no

bearing on the model.

7.4 Torque Controllers

Practical implementation of feedback linearization has several challenges, since it requires

model inversion. There are examples of applications where an approximate feedback lin-

earization was implemented [80]. There is work on applying a feedforward torque input

modulated by the phase variable [73]. The idea is to use the simulated trajectories and fit a

curve to the the torques used on the assumed model. Consider the following feedback lin-

earizing controller obtained from the nominal model with the assumption that the outputs

are identically zero. In other words, it is assumed that robot is exhibiting partial hybrid
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zero dynamics (5.42).

y(q) = ya(q)− yd(q)

Lfy(q, q̇) = ẏ(q, q̇)

L2
fy(q, q̇) =

∂Lfy

∂q
(q, q̇)q̇ − ∂Lfy

∂q̇
(q)(C(q, q̇)q̇ +G(q))

LgLfy(q, q̇) =
∂Lfy

∂q̇
(q)D−1(q)B, (7.21)

which can be used to compute the following control law

û = LgLfy(qd, q̇d)
−1
(
−L2

fy(qd, q̇d)
)
− 1

ε
LgV (q, q̇)T . (7.22)

Substituting (7.22) in the dynamics results in the disturbance input

d = LgLfy(qd, q̇d)
−1
(
−L2

fy(qd, q̇d)
)
− LgLfy(q, q̇)−1

(
−L2

fy(q, q̇) + µ
)
. (7.23)

It can be verified that the control law (7.22) is ISS. The formula

u∗ := LgLfy(qd, q̇d)
−1
(
−L2

fy(qd, q̇d)
)
, (7.24)

is effectively the torque applied on the robot as if it were on the hybrid zero dynamics. The

uncertainty in torque is therefore the deviation of the torque input of the nominal trajectory

from the torque input of the actual trajectory.

7.5 Parameter Uncertainty

If the assumed model D̂, Ĉ and Ĝ are only uncertain w.r.t. the parameters then we can

make use of the fact that these parameters are linear in the EOM of the robot. Therefore,
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we can represent the dynamics in the following manner

D(q)q̈ + C(q, q̇)q̇ +G(q) = Y(q, q̇, q̈)Θ, (7.25)

where Θ is the vector of model parameters. With this formulation, we can modify (7.14) to

obtain the following

D(q)q̈ + C(q, q̇)q̇ +G(q) = Y(q, q̇, q̈d)Θ− Y(q, q̇, q̈d)Θ̂︸ ︷︷ ︸
=:d

· · ·+D(q)q̈d + C(q, q̇)q̇ +G(q), (7.26)

where Θ̂ is the assumed set of model parameters. This results in the dynamics similar to

(7.15) and the control Lyapunov functions can be constructed similar to (7.20). Stability

analysis of hybrid bipedal robots under parameter uncertainty is analyzed in Chapter 8.

Note that instead of adding and subtracting Y(q, q̇, q̈d)Θ in (7.26), we could have added

and subtracted Y(q, q̇, q̈)Θ (function of the actual acceleration q̈) and obtained a different

formula for the uncertain dynamics d. In fact, this formulation is studied in Chapter 8 and

results in no change in the stability properties compared to the original form.

7.6 Phase Uncertainty

Despite all the differences between the different approaches in bipedal walking such as

the ZMP based control [81, 82], capture points [83], controlled symmetries [84], SLIP

model [85, 86], HZD [62], null space control [87], at a fundamental level, using a set of

trajectories (gaits) as reference is still the common universal theme found in them. This is

formally called gait planning even though these reference gaits are strictly not adhered to

(not strictly tracked) in some approaches. As a direct consequence of using these reference

gaits or reference trajectories, comes the issue of modulation of trajectories from start to

end. History has shown that smooth and reliable modulation of the trajectories is a really
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difficult problem, and there has been a lot of work solely dedicated to finding good candi-

dates for modulation [63]. In the controller of interest, the phase variable τv that modulates

the desired outputs in (5.2). Due to noisy phase variable (call it τ̂v, the resulting outputs are

ŷ1,v(q, q̇) = ya1,v(q, q̇)− yd1,v(τ̂v, αv), (7.27)

and relative two outputs (pose outputs)

ŷ2,v(q) = ya2,v(q)− yd2,v(τ̂v, αv). (7.28)

We have the feedback linearizing controller that drives the outputs ŷ1,v → 0, ŷ2,v → 0 as

û =

 Lgv ŷ1,v

LgvLfv ŷ2,v


−1−

Lfv ŷ1,v

L2
fv
ŷ2,v

+ µ̂

 , (7.29)

where µ̂ ∈ RmR is the auxiliary control input. The resulting dynamics is

ẋ = fv(x) + gv(x)(û− u︸ ︷︷ ︸
d

+u)

= fv(x) + gv(x)u+ gv(x)d, (7.30)

where d is explicitly given as

d =

 Lgv ŷ1,v

LgvLfv ŷ2,v


−1−

Lfv ŷ1,v

L2
fv
ŷ2,v

+ µ

−
 Lgvy1,v

LgvLfvy2,v


−1−

Lfvy1,v

L2
fv
y2,v

+ µ

 .

(7.31)

It can be observed that the the nonlinearity of the outputs w.r.t. the phase variable τv leads

to d attaining large values even for a slight perturbation of the phase variable. This phase

uncertainty can be simplified further and the controllers are developed in Chapter 9.

135



CHAPTER 8

PARAMETER UNCERTAINTY TO STATE STABILITY

There are two main paths for approaching the problem of model parameter uncertainty in

mechanical systems: 1. Obtain (usually through exhaustive experimentation) an accurate

identification of the model and then adopt a stabilizing controller. 2. Develop a robust con-

troller that renders the system stable despite the uncertainty. For the first approach, many

methods have been explored in identifying the model parameters involving state estima-

tion, regression, determination and validation in a systematic manner [88, 89]; this often

involves substantial and time consuming experimental validation [90]. By determining an

accurate model, model dependent controllers can be applied to realize accurate tracking

and control of such systems. Despite its simplistic nature, the success of this tedious ap-

proach typically relies on the accuracy of the estimation while accounting for variations

of parameters over time. While these model dependent controllers are able to deliver on

the performance (exponential convergence, large domains of attraction) promised by the

formal controller design process, they are extremely sensitive to changes in the parameters

sometimes leading to instability.

There is a significant amount of work in literature that take the second approach, i.e.,

relax the need for an accurate model [91, 92, 93, 94]. Some of the methods even completely

eliminate the requirement of the information of the entire parameter set via adaptive control

[95, 77], and via PD and PID regulation and tracking [96, 97, 98, 99, 100, 78, 101]. [102,

103] achieved adaptive control in bipedal robots without the analysis of impact models. L1

adaptive control was implemented in [104, 105] to yield an ultimate bound on the tracking

errors. There is also a significant amount of work done on developing controllers that

yield a bounded output error for a bounded parameter uncertainty [91, 92]. While all these

methods lead to the development of a robust controller that renders the system stable for a
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bounded uncertainty, the tracking and regulation performance is sacrificed, which is critical

in systems that undergo rapid changes in states—hybrid systems with impulsive effects.

It is important to note that the concept of a bounded error output for a bounded parame-

ter uncertainty has proven to be extremely restrictive on the choice of available controllers.

For example, it is a well known fact that the swinging motion of a simple pendulum with

zero input (trivial input) is independent of the point mass at its end. This simple exam-

ple demonstrates that we can always realize a space of unbounded model parameter sets

that have the exact same response for the given control input. This motivates the need for

a formal framework to understand the relationship between model parameter uncertainty

and the resulting tracking/regulation performance—especially in the context of hybrid sys-

tem models of robotic systems. In order to properly quantify this uncertainty that can be

formally related to the resulting stability of the system, a measure will be defined and ver-

ified in simulation in the robot AMBER1 [106]. After establishing the measure, stability

properties are proved by using showing the system is ISS w.r.t. to this measure.

For systems of the form ẋ = f(Θ;x, u), where Θ represents the parameter set, x repre-

sents the state and u the control input, the class of controllers that achieve a desired control

objective, e.g., driving x → 0, can be written via the Control Lyapunov Function (CLF)

V (x) > 0, through the set of control inputs that satisfy the derivative condition that V

decreases along solutions:

K = {u ∈ U : LfV (x, u) ≤ 0}.

Therefore model dependent controllers, such as feedback linearization [66] and adaptive

control [107] can be reformulated via CLFs, which satisfy the condition: V → 0 =⇒

x → 0. Since V̇ (x, u) = ∂V
∂x
f(Θ;x, u) is a function of the vector field f , determination of

u depends consequently on the parameters Θ. But, if the controller (say CLF) that stabilizes

the known model is applied on the imperfect model, the resulting dynamics of this imper-

137



fect model satisfies the conditions of an ISS-Lyapunov function [10]. The ISS-Lyapunov

function is constructed w.r.t. the input that is a function of the uncertainty. Furthermore,

for robotic systems, this function can be written as a linear function of the error in param-

eters Θ. Therefore, by defining a measure that quantifies the parameter uncertainty as a

function of the path and the controller, we can construct robust controllers that yield strict

ultimate bounds for the specified uncertainty in the model. Further, as an improvement on

the performance, we can construct controllers that use a combination of model based and

non model based controllers (computed torque+PD) to obtain exponential ultimate bounds

for hybrid systems.

The main goal of this chapter is to obtain ISS-CLFs for the uncertain robot model

AMBER1. It is assumed that the kinematics of the robot are accurately known. In other

words, the unknown parameters are the inertial properties of the robot. We first construct

these unknown inertial elements of the robot via spatial vector algebra. The advantage is

due to the fact that these parameters are linear in the dynamics of the robot.

8.1 Unmodeled Dynamics and State Stability

Since the parameters are not perfectly known, the equations of motion, (6.22), computed

with the given set of parameters will henceforth haveˆover the symbols. Therefore, Da,

Ca, Ga represent the actual model of the robot, and D̂, Ĉ, Ĝ represent the assumed model

of the robot.

As mentioned in (7.25), it is a well known fact that the inertial parameters of a robot

are affine in the EOM (see [108]). Therefore (6.22) can be restated as:

Y(q, q̇, q̈)Θ = Bu, (8.1)

where Y(q, q̇, q̈) is the regressor [108], and Θ is the set of base inertial parameters. Ac-

cordingly, Θa is the actual set of parameters, and Θ̂ is the assumed set of base inertial
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parameters. We will only separate the parameters that are difficult to identify, i.e., we will

assume that the kinematic parameters, such as link lengths, are accurately known. This

reduces the set of unknown parameters to only the inertial elements of the robot.

Computed Torque Redefined. The method of computed torque becomes very convenient

to apply if the regressor and the inertial parameters are being computed simultaneously. If

q̈d is the desired acceleration vector for the robot, the method of computed torque can be

defined as:

Buct = Y(q, q̇, q̈d)Θ̂. (8.2)

It can be observed that (8.2) is just a reformulation of (6.42). For convenience, the mapping

matrix B on the left hand side of (8.2) will be omitted, i.e., Buct = uct. Note that it is

assumed that the mapping matrix B (including its parameterization) is known to the user.

Due to the difference in parameters, it can be observed that the dynamics of the robot

becomes different, which is shown below:

Lemma 23. Define:

Φ = D̂−1Y(q, q̇, q̈), (8.3)

where the dependency of Φ on q, q̇, q̈ has been suppressed for notational connivance. Sim-

ilar to (6.41), if the control law used with the assumed model is:

q̈d =

 D̂1

J


−1

 0

µ

−
 Ĥ1

J̇ q̇


 , (8.4)

combined with the computed torque (8.2), then the resulting dynamics of the robot evolve

139



as:

ÿ = µ+ JΦ(Θ̂−Θa). (8.5)

Proof. By substituting for Bu in (6.22), we have:

Da(q)q̈ + Ca(q, q̇)q̇ +Ga(q) = D̂(q)q̈d + Ĉ(q, q̇)q̇ + Ĝ(q), (8.6)

by adding and subtracting D̂(q)q̈ on the right hand side of (8.6), we have:

D̂(q)q̈ − D̂(q)q̈d = Y (q, q̇, q̈)(Θ̂−Θa), (8.7)

where by substituting for q̈d, the following result is obtained:

D̂1q̈ + Ĥ1

ÿ

 =

 D̂1Φ(Θ̂−Θa)

µ+ JΦ(Θ̂−Θa)

 . (8.8)

The bottom row is the desired result. The top row shows the dynamics of one of the zero

coordinates and its relationship with parameter uncertainty.

The dynamics of this uncertain system can be written in the following form:

η̇ = Fη +Gµ+GJΦΘ̃

ż = Ψ(Θa; η, z), (8.9)

where Θ̃ = Θ̂ − Θa. The dependency of the zero dynamics on the true parameter set

Θa is explicitly shown. If Θ̃ = 0, we could apply (5.27) to drive η → 0. But since the

parameters are uncertain, i.e., Θ̃ 6= 0, the resulting nonlinear dynamics will be observed in
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the derivative of the Lyapunov function:

V̇ε(η, µ) = η̇TPεη + ηTPεη̇, (8.10)

= ηT (F TPε + PεF )η + 2ηTPεGµ+ 2ηTPεGJΦΘ̃,

where η̇ is obtained via (8.9). The next section will establish the relationship between

parameter uncertainty and the uncertain dynamics appearing in the CLF through the pa-

rameter uncertainty measure.

8.2 Parameter Uncertainty Measure

Due to the unmodeled dynamics, applying the controller, µ(η) ∈ Kε(η), does not result

in exponential convergence of the controller. The controller will still yield boundedness

based on how the unmodeled dynamics affect V̇ε. The parameter uncertainty measure, ν,

that quantifies the ultimate bound on the Lyapunov function Vε is defined as:

ν := Y(q, q̇, q̈)Θ̃. (8.11)

It can be observed that: Y(q, q̇, q̈)Θ̃ = Y(q, q̇, q̈)Θ̂ − Y(q, q̇, q̈)Θa, which is the differ-

ence between the actual and the expected torque being applied on the robot. Therefore, the

parameter measure is effectively the difference in torques applied on the robot. It can be

observed that the sensitivity and the uncertainty analysis w.r.t. the parameters take a simi-

lar approach (see [109]), where the partial derivatives of the controller inputs are computed

w.r.t. Θ:

Control Sensitivity =
∂u

∂Θ
= Y(q, q̇, q̈).

Control Uncertainty =
∂u

∂Θ
(Θ̂−Θa) = ν, (8.12)

which justifies the reasoning behind using the nomenclature parameter uncertainty mea-
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sure. If Θ̃ is identically a vector of 1′s, ν is called parameter sensitivity measure. It must

be noted that ν was called the parameter sensitivity measure in [106], which was changed

to the current nomenclature after the review.

8.3 Parameter to State Stability

By (8.3) and (8.11), we have: D̂−1ν = ΦΘ̃. Therefore, (8.10) can be expressed as:

V̇ε(η, µ) =ηT (F TPε + PεF )η + 2ηTPεGµ+ 2ηTPεGJD̂
−1ν, (8.13)

which is now a function of ν. This provides an important connection with Lyapunov theory,

and the notion of parameter uncertainty is motivated by this observation. In other words,

if the path of least ν is followed, then the convergence of the Lyapunov function to a value

very close to zero can be realized. Therefore, we will define the notion of Parameter to

State Stability in the following manner:

Definition 50. Assume a ball of radius r around the origin. The system given by (8.9) is

locally parameter to η stable , if there exists β ∈ KL, and ι ∈ K∞ such that:

|η(t)| ≤ β(|η(0)|, t) + ι(‖ν‖∞), ∀η(0) ∈ Br(0),∀t ≥ 0, (8.14)

and it is locally parameter to state stable, if

|(η(t), z(t))| ≤ β(|(η(0), z(0))|, t) + ι(‖ν‖∞), ∀(η(0), z(0)) ∈ Br(0, 0),∀t ≥ 0.

(8.15)

If a suitable controller is applied to (8.13): µ(η) ∈ Kε(η) , the stability of the Lyapunov

function can be achieved as long as the following equation is satisfied:

V̇ε ≤ −
γ

ε
Vε + 2ηTPεGJD̂

−1ν ≤ 0, (8.16)
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This class of controllers can be explicitly obtained from (5.55), or in terms of the joint

actuators as

Kε(η, z) = {u ∈ U : Lf̂Vε(η, z) + LĝVε(η, z)u+
1

ε
Vε(η) ≤ 0}, (8.17)

where Lf̂ , Lĝ are the Lie derivatives of the robot model that we know (note the presence

ofˆover f, g). They are nothing but (5.56) with the relabeled f, g. They can be explicitly

obtained as

Lf̂Vε = ηTPε
∂η

∂x
f + fT

∂η

∂x

T

Pεη

LĝVε = 2ηTPεGJ D̂−B. (8.18)

It must be noted that the measure ν is also a function of the control input µ, resulting

in an algebraic loop in (8.16). But, by a careful selection of the control input, it is possible

to stabilize the dynamics of η by the restriction of ν through the robot model parameters.

Therefore, we first assume the bounds on the robot model in the following manner:

c4 ≤ ‖D‖ ≤ c5, ‖C‖ ≤ c6‖q̇‖, ‖G‖ ≤ c7,

ĉ3 ≤ ‖D̂‖ ≤ ĉ4, ‖Ĉ‖ ≤ ĉ5‖q̇‖, ‖Ĝ‖ ≤ ĉ6. (8.19)

where c4 − c7, ĉ3 − ĉ6 are constants (see [110, 111]). Since the outputs are degree one

functions of q, the Jacobian can also be bounded by the constant: ‖J‖ ≤ κ. By assuming

that ν is bounded over time, we can establish a parameter to state stable(PSS)-Lyapunov

function for the dynamics (8.13), which is shown in the following Lemma.

Lemma 24. Given a controller µ(η) ∈ Kε(η), the system (8.9) is parameter to η stable,

w.r.t. the parameter input ν.
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Proof. Since Vε(η) is bounded by the norms of ‖η‖, we have the following:

γ

ε
ηTPεη ≥

γ

ε
c1‖η‖2, (8.20)

For (8.16) with the bounds on Pε,G,J and D̂ we have the following inequality:

V̇ε ≤ −
γ

ε
Vε + 2

c2κĉ
−1
3

ε2
‖η‖‖ν‖. (8.21)

The system is 0 stable for ν ≡ 0, and with γ replaced with γ1 + γ2 = γ:

V̇ε ≤ −
γ1 + γ2

ε
Vε + 2

c2κĉ
−1
3

ε2
‖η‖‖ν‖,

=⇒ V̇ε ≤ −
γ2

ε
Vε, for

γ1

ε
Vε(η) > 2‖η‖‖ν‖ c2κ

ε2ĉ3

, (8.22)

which implies that V is decreasing exponentially for γ1
ε
c1‖η‖2 > 2‖η‖ c2κ

ε2ĉ3
‖ν‖. This satis-

fies the AG property, and from Lemma 2 it implies parameter to η stability w.r.t. ν.

It can be observed that due to AG, the exponential ultimate bound for a nonzero ‖ν‖∞

is given by limt→∞ ‖η(t)‖ ≤ 2 c2κ
c1εĉ3γ1

‖ν‖∞. A good way to reduce the ultimate bound is

to increase ε, but, this affects the convergence rate, γ2
ε

. Consequently Lemma 24 yields a

low convergence rate for the output error η. This affects the stability of hybrid periodic

orbits as mentioned in Theorem 2 of [28], which requires ε to be sufficiently small for

stable walking. In order to retain the original convergence rate, γ
ε

without sacrificing the

ultimate bound, and to nullify the uncertain dynamics separately, we pick an auxiliary input

µ̄ satisfying:

Buctn = D̂(q)q̈d + Ĉ(q, q̇)q̇ + Ĝ(q) +Bµ̄. (8.23)

Note that this is not unique and other types of controllers can also be used. Computed

torque with linear inputs appended have also been used in [95] in order to realize asymptotic
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convergence. The resulting dynamics of the outputs then reduces to:

ÿ = µ+ JD̂−1ν + JD̂−1Bµ̄, (8.24)

which can be obtained by adding Bµ̄ in (8.6) in the proof of Lemma 23.

By applying (8.24), (8.9) will have an extra input µ̄ that yields:

η̇ = Fη +Gµ+GJD̂−1ν +GJD̂−1Bµ̄

ż = Ψ(Θa; η, z), (8.25)

Therefore, V̇ε for the new input can be reformulated as:

V̇ε(η, µ, µ̄) = ηT (F TPε + PεF )η + 2ηTPεGµ+ 2ηTPεGJD̂
−1(ν +Bµ̄). (8.26)

Consider the input µ̄ = −1
ε̄
ΓTGTPεη, where ε̄ > 0, Γ = JD̂−1B (should not be confused

with the directed graph in (4.1)). Then µ and µ̄ together form the computed torque+PD con-

trol on the robot. The end result is a positive semidefinite expression: 1
ε̄
ηTPεGΓΓTGTPεη ≥

0, which motivates the construction of a positive semidefinite function:

V̄ε(η) = ηTPεGΓΓTGTPεη =: ηT P̄εη. (8.27)

From (8.18) we also have that

V̄ε =
1

4
LĝVεLĝV

T
ε . (8.28)

Using the property of positive semi-definiteness, we can establish new bounds on the

outputs. Let N (P̄ε) be the null space of the matrix P̄ε. If η ∈ N (P̄ε), then V̄ε(η) = 0.
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Otherwise, for some c8, c9 > 0:

c8‖η‖2 ≤ V̄ε(η) ≤ c9

ε4
‖η‖2. (8.29)

Note that (8.29) can be used to restrict the uncertain dynamics in (8.26). Utilizing these

constructions, we can pick µ̄ from the class of controllers

K̄ε,ε̄(η) = {µ̄ ∈ U : 2ηTPεGJD̂
−1Bµ̄+

1

ε̄
V̄ε(η) ≤ 0}, (8.30)

inorder to cancel the uncertain dynamics due to ν separately.

We can also define the following class of controllers

Kε,ε̄(η, z) = {u ∈ U : Lf̂Vε(η, z) + LĝVε(η, z)u+
1

ε
Vε(η) +

1

ε̄
V̄ε(η) ≤ 0}, (8.31)

which is nothing but (5.58). Lemma 24 can now be redefined to obtain the new exponential

ultimate bound for the new control input (8.23).

Lemma 25. Given the controllers µ(η) ∈ Kε(η), µ̄(η) ∈ K̄ε,ε̄(η), the system (8.25) is

exponential parameter to η stable w.r.t. the parameter input ν.

Proof. If η is in the null space of the semi definite matrix, as given in (8.27): η ∈ N (P̄ε),

then ηTPεG = 0 and the uncertainty does not affect Vε giving the desired result. If η does

not belong to the null space, then the result can be proved by using the following constraint:

1

ε̄
V̄ε(η) > 2

c2κĉ
−1
3

ε2
‖η‖‖ν‖, (8.32)

which gives the AG property: limt→∞ ‖η‖ ≤ 2 c2κ
c8ε2ĉ3

ε̄‖ν‖∞ =: bη‖ν‖∞ implying parameter

to η stability.
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It can be inferred that:

Vε(η(t)) ≤ e−
γ
ε
tVε(η(0)) ∀ ‖η(t)‖ > bη‖ν‖∞, (8.33)

⇒ ‖η(t)‖ ≤ 1

ε

√
c2

c1

e−
γ
2ε
t‖η(0)‖ ∀ ‖η(t)‖ > bη‖ν‖∞.

It should be noted that both the main and auxiliary gains ε, ε̄ affect the measure ν. There-

fore, the gain ε̄ and also the measure norm need to be reasonably small to get sufficient

ultimate bounds. This is illustrated very well in Fig. 8.3 where an almost constant measure

(excluding the impacts), and a decreasing ε̄ results in lowering of Vε.

Given the locally Lipschitz continuous feedback law µ(η) = Kε(η), µ̄(η) = K̄ε,ε̄(η),

we have the following equation:

η̇ = Fη +Gµ(η) +GJD̂−1Bµ̄(η) +GJD̂−1ν

ż = Ψ(Θa; η, z), (8.34)

We can now utilize the ISS notion in under-actuated systems given that the zero dynam-

ics of the robot has a locally exponentially stable periodic orbit for the assumed model.

Zero Dynamics. Let X ⊂ R2k,Z ⊂ R2(n−k). Let ϕt(η, z) be the flow of (8.34) with the

initial condition (η, z) ∈ X × Z. The flow ϕt is periodic with period T ∗ > 0 and a fixed

point (η∗, z∗) if ϕT ∗(η∗, z∗) = (η∗, z∗). Associated with the periodic flow is the periodic

orbit

O = {ϕt(η∗, z∗) ∈ X × Z : 0 ≤ t ≤ T ∗}.

Similarly, we denote the flow of the zero dynamics given by (8.34) by ϕzt and for a periodic

flow we denote the corresponding periodic orbit by Oz ⊂ Z. Due to the invariance of the

zero dynamics, we have the mapping O = ι0(Oz), where ι0 : Z → X ×Z is the canonical

embedding.

Without loss of generality, we can use the norm on X × Z as the sum of the norms
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constructed on X and Z separately: ‖(η, z)‖ = ‖η‖ + ‖z‖. The distance between (η, z)

and the periodic orbit O satisfies:

‖(η, z)‖O = inf
(η′,z′)∈O

‖(η, z)− (η′, z′)‖

= inf
z′∈Oz

‖z − z′‖+ ‖η − 0‖

= ‖z‖Oz + ‖η‖. (8.35)

The periodic orbit O is exponentially stable if there are constants r, δ1, δ2 > 0 such that

if (η, z) ∈ Br(O) = {(η, z) ∈ X × Z : ‖(η, z)‖O < r} it follows that ‖ϕt(η, z)‖O ≤

δ1e
−δ2t‖(η, z)‖O. Exponential stability of Oz can also be similarly defined.

We can introduce a theorem that establishes the parameter to state stability of the periodic

orbit O with the assumption that Oz is exponentially stable.

Theorem 5. Assume that the periodic orbit Oz ⊂ Z is exponentially stable for the as-

sumed model Θ̂. Given the controllers µ(η) ∈ Kε(η), µ̄(η) ∈ K̄ε,ε̄(η) applied on (8.34),

that render exponential η stability, then the periodic orbit O obtained from the canonical

embedding is exponential parameter to state stable.

Proof. Due to the inherent stability of η, 0 stability of the entire dynamics is directly im-

plied. AG property is established by computing the ultimate bound on the state dynamics

(η, z). Since Oz is exponentially stable, there is a Lyapunov function Vz : Z → R≥0 such

that in a neighborhood Br(Oz) ofOz (see [112]) it is exponentially stable. Specific bounds

is given by the following:

c10‖z‖2
Oz ≤ Vz(z) ≤ c11‖z‖2

Oz ,

∂Vz
∂z

Ψ(Θ̂; 0, z) ≤ −c12‖z‖2
Oz ,∣∣∣∣∣∣∣∣∂Vz∂z

∣∣∣∣∣∣∣∣ ≤ c13‖z‖Oz , (8.36)
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where c10, c11, c12, c13 are constants. The zero dynamics of the actual model deviates from

the nominal model; we have the following inequality that is inferred from the first row of

(8.8):

∂Vz
∂z

Ψ(Θa; 0, z)≤ −c12‖z‖2
Oz +

∂Vz
∂z

(Ψ(Θa; 0, z)−Ψ(Θ̂; 0, z))

≤ −c12

2
‖z‖2

Oz −
c12

2
‖z‖2

Oz + c13‖z‖Lz‖ν‖, (8.37)

for which the exponential upper bound for z can be obtained: bz‖ν‖∞ := 2c13Lz
c12
‖ν‖∞. Lz

is the Lipschitz constant.

The combined Lyapunov function of the entire dynamics is given as:

Vc(η, z) = σVz(z) + Vε(η). (8.38)

Upper bounds and lower bounds on Vc can be defined as:

Vc(η, z) ≤ max{σc11,
c2

ε2
}(‖z‖2

Oz + ‖η‖2),

Vc(η, z) ≥ min{σc10, c1}(‖z‖2
Oz + ‖η‖2), (8.39)

Therefore, taking the derivative:

V̇c(η, z) = σ
∂Vz
∂z

Ψ(Θ̂; 0, z) + σ
∂Vz
∂z

(Ψ(Θa; η, z)−Ψ(Θa; 0, z)

+Ψ(Θa; 0, z)−Ψ(Θ̂; 0, z)) + V̇ε(η),

≤ −σc12‖z‖2
Oz + σc13‖z‖Oz(Lq‖η‖+ Lz‖ν‖) + V̇ε(η), (8.40)

where Lq, Lz are the Lipschitz constants for Ψ in (8.9) w.r.t. η and ν respectively. Us-

ing (8.10), (8.40) can be modified such that sufficient conditions for boundedness can be
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realized. Using (8.32) we have the following expression for the Lyapunov function:

V̇c ≤− σ
c12

2
‖z‖2Oz + σc13Lq‖z‖Oz‖η‖ −

γ

ε
Vε, ∀‖(η, z)‖ > (bη + bz)‖ν‖∞. (8.41)

To ensure negative definiteness of the V̇c in (8.41), σ is picked such that: c12
2
c1
γ
ε
−σ c

2
13L

2
q

4
>

0, giving the desired result.

8.4 Hybrid Dynamics

We now extend Theorem 5 to hybrid robotic systems that involve alternating phases of

continuous and discrete dynamics. A hybrid system with a single continuous and a discrete

event is defined as follows:

H =



η̇ = Fη +Gµ(η) +GJD̂−1Bµ̄(η) +GJD̂−1ν,

ż = Ψ(Θ; η, z), if (η, z) ∈ D\S

η+ = ∆η(Θ, η
−, z−),

z+ = ∆z(Θ, η
−, z−), if (η−, z−) ∈ S

(8.42)

It must be noted that the parameter vector Θ can be either Θa or Θ̂. Since the parameters

Θa are not known, the output trajectory design is made for the assumed model Θ̂.

It is assumed that Ψ is Lipschitz in both ν, η. D,S are the domain and switching surfaces

and are given by:

D = {(η, z) ∈ X × Z : h(η, z) ≥ 0}, (8.43)

S = {(η, z) ∈ X × Z : h(η, z) = 0 and ḣ(η, z) < 0},
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for some continuously differentiable function h : X × Z → R. The reset map

∆(Θ, η−, z−) = (∆η(Θ, η
−, z−),∆z(Θ, η

−, z−)),

represents the discrete dynamics of the system. For the bipedal robot, AMBER, h rep-

resents the non-stance foot height and ∆ represents the impact dynamics of the system.

Plastic impacts are assumed. For (q−, q̇−) ∈ S, being the pre-impact angles and velocities

of the robot, the post impact velocity for the assumed model ˙̂q+, and for the actual model

q̇+ will be obtained from:

D̂ −J T

J 0


 ˙̂q+

δF̂imp

 =

D̂q̇−
0

,
Da −J T

J 0


 q̇+

δFimp

 =

Daq̇
−

0

 (8.44)

where δF̂imp, δFimp are the impulsive forces acting from the ground, J is the Jacobian of

the foot where the impulse forces are acting on the robot. By using the Schur complement

to get the block matrix inversion we can obtain the post impact velocities as (see [73]):

˙̂q+= (I − D̂−1J T (J D̂−1J T )−1J )q̇−,

q̇+= (I −D−1
a J T (JD−1

a J T )−1J )q̇−,

q̇+ − ˙̂q+= D̃(q)q̇−, (8.45)

where D̃(q) ∈ Rn×n is a long expression obtained after computing the difference between

the two post impact velocities. If Da = D̂, D̃(q) = 0, which can be used as a candidate for

measuring uncertainty during impacts.

Impact Measure. Using the impact model, measuring uncertainty of post-impact dynam-

ics can be achieved by introducing an impact measure, νs, for hybrid systems. It is defined
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as:

νs := D̃(q)q̇−. (8.46)

It should be noted that the impact equations are Lipschitz continuous w.r.t. the impact

measure νs. Accordingly, we have the following bounds on the impact map:

‖∆η(Θa, η
−, z−)−∆η(Θ̂, 0, z

−)‖

≤ ‖∆η(Θa, η
−, z−)−∆η(Θ̂, η

−, z−) + ∆η(Θ̂, η
−, z−)−∆η(Θ̂, 0, z

−)‖

≤ L1‖νs‖+ L2‖η−‖, (8.47)

where L1, L2 are Lipschitz constants for ∆η. Similarly:

‖∆z(Θa, η
−, z−)−∆z(Θ̂, 0, z

−)‖ ≤ L3‖νs‖+ L4‖η−‖, (8.48)

where L3, L4 are Lipschitz constants for ∆z. In order to obtain bounds on the output

dynamics for hybrid periodic orbits, it is assumed that H has a hybrid zero dynamics for

the assumed model, Θ̂, of the robot. More specifically, we assume that ∆η(Θ̂, 0, z
−) = 0,

so that the surface Z is invariant under the discrete dynamics. The hybrid zero dynamics

can be described as:

H |Z =

 ż = Ψ(Θ̂; 0, z) if z ∈ Z\(S ∩ Z)

z+ = ∆z(Θ̂, 0, z
−) if z− ∈ (S ∩ Z)

(8.49)

Realizing hybrid zero dynamics (desired trajectories in particular) is in itself a difficult

problem and requires large scale nonlinear programming toolboxes, which are explained in

detail in [64].

Given the hybrid system (8.42), denote the hybrid flow as ϕt(Θ; ∆(Θ, η−, z−)) with the

initial condition (η−, z−) ∈ S ∩ Z. For the model estimate Θ̂, we can define the hybrid
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flow of (8.49) as ϕzt (Θ̂; ∆z(Θ̂, 0, z
−)) with the initial state (0, z−) ∈ S ∩ Z. If a periodic

orbit Oz exists in (8.49), then there exists a periodic flow ϕzt (Θ̂; ∆z(Θ̂, 0, z
∗)) of period T ∗

for the fixed point (0, z∗). Through the canonical embedding, the corresponding periodic

flow of the periodic orbit O in (8.42) will be ϕt(Θ̂; ∆(Θ̂, 0, z∗)). Note that existence of

periodic orbits for the assumed model Θ̂ does not guarantee existence for the actual model

Θa. Associated with the hybrid periodic orbit is the Poincaré map P : S→ S given by:

P(Θ; η, z) = ϕT (Θ;η,z)(Θ; ∆(Θ, η, z)), (8.50)

where Θ can be either Θa or Θ̂, and T is the time to impact function defined by:

T (Θ; η, z) = inf{t ≥ 0 : ϕt(Θ; ∆(Θ, η, z)) ∈ S}. (8.51)

The Poincaré map can be divided into η component Pη, and z component Pz respectively.

Similar to the assumptions made in [28], the implicit function theorem implies that T

is well defined in a neighborhood of (Θ̂, η∗, z∗). Therefore, T (Θ̂; η∗, z∗) = T ∗ and so

P(Θ̂; η∗, z∗) = (η∗, z∗). Also, since ϕt(Θ; ∆(Θ, η, z)) is Lipschitz continuous, T is also

Lipschitz.

A hybrid periodic orbit OZ , of HZ can be similarly defined, in which case the corre-

sponding Poincaré map ϑ : S ∩ Z → S ∩ Z is termed the restricted Poincaré map:

ϑ(z) = ϕzTϑ(z)(Θ̂; ∆z(Θ̂, 0, z)), (8.52)

where ϕz is the flow of ż = Ψ(Θ̂; 0, z) and Tϑ is the restricted time to impact function,

which is given by Tϑ(z) = T (Θ̂; 0, z). Without loss of generality, we can assume that

Θ̂ = 0, η∗ = 0, z∗ = 0. For ease of notations let Θ = Θa − Θ̂ = Θa
1. The following

Lemma will introduce the relationship between time to impact, Poincaré functions with the

1It is safe to assume Θ̂ = 0 here because we are interested in capturing the uncertainty in the dynamics
(difference) and not the actual dynamics by itself.
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state η and the impact measure νs.

Lemma 26. Let OZ be the periodic orbit of the hybrid zero dynamics H |Z transverse to

S ∩ Z for the nominal model Θ̂ (Θ = 0). Given Θa (Θ 6= 0), and given the controllers

µ(η) ∈ Kε(η), µ̄(η) ∈ K̄ε,ε̄(η) applied on the hybrid system (8.42), then for r > 0 such

that (η, z) ∈ Br(0, 0) and ‖η‖ > bη‖ν‖∞, there exist finite constants A1, A2, A3, A4 > 0

such that:

‖T (Θ; η, z)− Tϑ(z)‖ ≤ A1‖η‖+ A2‖ν‖max, (8.53)

‖Pz(Θ; η, z)− ϑ(z)‖ ≤ A3‖η‖+ A4‖ν‖max, ‖ν‖max = max{‖ν‖∞, ‖νs‖}.

Proof. (8.53) is proved by constructing an auxiliary time to impact function TB that is

Lipschitz continuous and then relate it to T . Let µ1 ∈ R2(n−k), µ2 ∈ R2k be constant

vectors and let ϕzt (∆z(0, 0, z0)) be the solution of ż = Ψ(0; 0, z) with z(0) = ∆z(0, 0, z0).

Define:

TB(µ1, µ2, z) = inf{t ≥ 0 : h(µ1, ϕ
z
t (∆z(0, 0, z)) + µ2) = 0},

which is nothing but equation (55) of [28] with the inclusion of model parameters. It

follows that TB(0, 0, z) = Tϑ(z). By construction, TB is Lipschitz continuous. We have,

‖TB(µ1, µ2, z)− Tϑ(z)‖ ≤ LB(‖µ1‖+ ‖µ2‖), (8.54)

where LB is the local Lipschitz constant. We note that T (Θ; η, z) is continuous and there-

fore there exists r > 0 such that for all Br(0, 0) ∩ S: c15T
∗ ≤ T (Θ; η, z) ≤ c16T

∗, where

0 < c15 < 1 and c16 > 1. Let (η1(t), z1(t)) satisfy ż1 = Ψ(Θ; η1(t), z1(t)) with η1(0) =

∆η(Θ, η, z) and z1(0) = ∆z(Θ, η, z). Similarly let z2(t) satisfy ż2(t) = Ψ(0; 0, z2(t)) such

that z2(0) = ∆z(0, 0, z). We can now determine µ1, µ2.

The bounds on the Lyapunov function can be given as ‖η1(0)‖ = ‖∆η(Θ, η, z) −
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∆η(0, 0, z)‖ ≤ L1‖νs‖ + L2‖η‖, which is obtained through (8.47). Since ‖η1‖ > d, by

using (8.33) we have:

‖η1(t)‖t=T (Θ;η,z) ≤
√
c2

c1

1

ε
e−

γ
2ε
c15T ∗(L1‖νs‖+ L2‖η‖),

which yields the value of ‖µ1‖. To obtain ‖µ2‖, we use the Gronwall-Bellman argument

(similar to page 8 in [28]). We know that:

z1(t)− z2(t) = z1(0)− z2(0) +

∫ t

0
Ψ(Θ; η1(τ), z1(τ))−Ψ(0; 0, z2(τ))dτ,

and therefore by using (8.48) and using the property of Lipschitz continuity of Ψ:

‖z1(t)− z2(t)‖ ≤ L3‖νs‖+ L4‖η‖+

∫ t

0
Lq(‖η1(τ)‖+ ‖z1(τ)− z2(τ)‖) + Lz‖ν‖dτ

≤ L3‖νs‖+ L4‖η‖+
2

γ

√
c2

c1
Lq(L1‖νs‖+ L2‖η‖) + c16T

∗Lz‖ν‖∞

+

∫ t

0
Lq(‖z1(τ)− z2(τ)‖)dτ, (8.55)

where (8.55) is integrated and substituted in the above equation. By Gronwall-Bellman

inequality,

‖z1(t)− z2(t)‖ ≤ (C2‖η‖+ C3‖ν‖max) eLqt (8.56)

C2 = 2
γ

√
c2
c1
LqL2 + L4, C3 = 2 max{ 2

γ

√
c2
c1
LqL1 + L3, c16T

∗Lz}.

Therefore, ‖µ2‖ ≤ ‖z1(c16T
∗) − z2(c16T

∗)‖ by substituting for the upper bound on T .

Proof of (8.53) can now be obtained by substituting for ‖µ1‖, ‖µ2‖.

To prove (8.54), define:

C4 = max
c15T ∗≤t≤c16T ∗

‖Ψ(0; 0, z2(t))‖, (8.57)
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it then follows that:

‖Pz(Θ; η, z)− ϑ(z)‖ ≤ ‖z1(0)− z2(0)‖

+

∫ T (Θ;η,z)

0
‖Ψ(Θ; η1(τ), z1(τ))−Ψ(0; 0, z2(τ))‖dτ

+

∫ Tϑ(z)

T (Θ;η,z)
‖Ψ(0; 0, z2(τ))‖dτ,

which results in the following inequality:

‖Pz(Θ; η, z)− ϑ(z)‖ ≤ ‖z1(c16T
∗)− z2(c16T

∗)‖+ C4‖T (Θ; η, z)− Tϑ(z)‖. (8.58)

Collecting the terms together yields the desired result.

8.5 Main Theorem

We can now introduce the main theorem of the chapter. Similar to the continuous dynamics,

it is assumed that the periodic orbitOz is exponentially stable in the hybrid zero dynamics.

Theorem 6. Let Oz be an exponentially stable periodic orbit of the hybrid zero dynamics

H |Z transverse to S ∩ Z for the nominal model Θ̂ (Θ = 0). Given the actual model Θa

(Θ 6= 0) and the controllers µ(η) ∈ Kε(η), µ̄(η) ∈ K̄ε,ε̄(η) for the hybrid system H given

by (8.42), then for the ball of radius r > 0 such that (η, z) ∈ Br(0, 0), there exists δ > 0

such that for ‖ν‖ < δ, ‖νs‖ < δ the periodic orbit O is exponential parameter to state

stable.

Proof. Results of Lemma 26 and the exponential stability of Oz imply that there exists

r > 0 such that ϑ : Br(0) ∩ (S ∩ Z) → Br(0) ∩ (S ∩ Z) is well defined for all z ∈

Br(0) ∩ (S ∩ Z) and zj+1 = ϑ(zj) is locally exponentially stable, i.e., ‖zj‖ ≤ Nξj‖z0‖

for some N > 0, 0 < ξ < 1 and all j ≥ 0. Therefore, by the converse Lyapunov theorem

for discrete systems, there exists a Lyapunov function Vϑ, defined on Br(0) ∩ (S ∩ Z)
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for some r > 0 (possibly smaller than the previously defined r), and positive constants

c17, c18, c19, c20 such that:

c17‖z‖2 ≤ Vϑ(z) ≤ c18‖z‖2,

Vϑ(ϑ(z))− Vϑ(z) ≤ −c19‖z‖2,

|Vϑ(z)− Vϑ(z′)| ≤ c20‖z − z′‖.(‖z‖+ ‖z′‖). (8.59)

Zero stability (perfect model) is valid by default due to the construction (hybrid zero dy-

namics and RES-CLF with sufficiently small ε provide exponential convergence to O,

see [28]). To prove AG property it should be first ensured that the region defined by

limt→∞‖(η(t), z(t))‖ must be within the bounds defined by r. Therefore it is required

that the ultimate bound is less than r:

(bη + bz)‖ν‖∞ < r, δr :=
r

(bη + bz)
, (8.60)

which gives the allowable upper bound δr on ‖ν‖∞. It is also required that the post impact

states are also in Br(0, 0). Therefore, a second upper bound δI is given as follows:

‖∆(Θ; η, z)‖ ≤ L∆1‖νs‖+ L∆2‖(η, z)‖ ≤ r,

=⇒ δI :=
r

L∆1 + L∆2(bη + bz)
, (8.61)

L∆1 , L∆2 are Lipschitz constants.

For the RES-CLF Vε, denote its restriction to the switching surface by

Vε,η(η) = Vε|S(η) = Vε(η), η ∈ S. (8.62)
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With these two Lyapunov functions we define the following candidate Lyapunov function:

VP (η, z) = Vϑ(z) + σVε,η(η), (8.63)

defined on Br(0, 0) ∩ S. The lower and upper bounds on VP are:

min{c17, σc1}‖(η, z)‖2 ≤ VP (η, z) ≤ max{c18, σ
c2

ε2
}‖(η, z)‖2. (8.64)

The idea is to show that there exists a bounded region into which the dynamics of the

robot exponentially converge. If the outputs enter this region then it stays for all time

even through impacts. We know that η1(0) = ∆η(Θ, η, z). if ‖η1(0)‖ < bη‖ν‖∞, then

the boundedness is verified. For the case when the impact map takes the outputs outside

the bounded region (by utilizing (8.33)) we pick the lower bound on the time to impact

function:

Vε,η(Pη(Θ; η, z)) ≤ c2

ε2
e−

γ
ε
T (Θ;η,z)‖∆η(Θ, η, z)‖2, (8.65)

≤ c2

ε2
e−

γ
ε
T (Θ;η,z)(L1‖νs‖+ L2‖η‖)2.

Taking A5 = c2
ε2
e−

γ
ε
c15T ∗ , we have the following:

Vε,η(Pη(η, z))− Vε,η(η) ≤ A5(L1‖νs‖+ L2‖η‖)2 − c1‖η‖2.

≤ A5(L1‖ν‖max + L2‖η‖)2 − c1‖η‖2. (8.66)

Since the origin is an exponentially stable equilibrium for zj+1 = ϑ(zj), we have the fol-
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lowing inequalities:

‖Pz(Θ; η, z)‖ = ‖Pz(Θ; η, z)− ϑ(z) + ϑ(z)− ϑ(0)‖

≤ A3‖η‖+ A4‖ν‖max + Lϑ‖z‖

‖ϑ(z)‖ ≤ Nξ‖z‖, (8.67)

where Lϑ is the Lipschitz constant for ϑ. Therefore:

Vϑ(Pz(Θ; η, z))− Vϑ(ϑ(z)) ≤ c20(A3‖η‖+ A4‖ν‖max) (8.68)

(A3‖η‖+ A4‖ν‖max + (Lϑ +Nξ)‖z‖).

It follows that:

Vϑ(Pz(Θ; η, z))− Vϑ(z) = Vϑ(Pz(Θ; η, z))− Vϑ(ϑ(z)) + Vϑ(ϑ(z))− Vϑ(z), (8.69)

and the expressions in (8.68) and in (8.59) can be substituted. Combining the entire Lya-

punov function we have:

VP (P(Θ; η, z))− VP (η, z) ≤ −


‖η‖

‖z‖

‖ν‖max


T

ΛH


‖η‖

‖z‖

‖ν‖max

 , (8.70)
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where the symmetric matrix ΛH ∈ R3×3, with the upper triangular entries being:

a1 = ΛH (1, 1) = σ(c1 − A5L
2
2)− c20A

2
3

−a2 = ΛH (1, 2) = −c20A3

2
(Lϑ +Nξ)

−a3 = ΛH (1, 3) = −c20A3A4 − σA5L1L2

a4 = ΛH (2, 2) = c19

−a5 = ΛH (2, 3) = −c20A4

2
(Lϑ +Nξ)

−a6 = ΛH (3, 3) = −σA5L
2
1 − c20A

2
4. (8.71)

(8.70) is in the form of discrete time ISS-Lyapunov function as specified by (4.70) (input

being the parameter uncertainty ‖ν‖max). Similar to the proof of Theorem 2 in [28], we

pick a large enough σ to ensure the matrix Λ =

 a1 −a2

−a2 a4

 is positive definite. A

specific value for σ is given in page 9 of [28] that yields exponential convergence of

hybrid periodic orbits. This is extended to include parameter uncertainty by utilizing (4.70)

in (8.70) in the following manner:

VP (P(Θ; η, z))− VP (η, z) ≤−λmin(Λ)‖(η, z)‖2 (8.72)

+(2a3‖η‖+ 2a5‖z‖+ a6‖ν‖max)‖ν‖max.

Therefore, to compute the limit on ‖ν‖max , we can divide the minimum eigenvalue

λmin(Λ) by 2 and obtain the following:

VP (P(Θ; η, z))− VP (η, z) ≤ −λmin(Λ)

2
‖(η, z)‖2

for− λmin(Λ)

2
‖(η, z)‖2 + 2(a3 + a5)‖(η, z)‖‖ν‖max + a6‖ν‖2

max > 0. (8.73)

Therefore exponential upper bound is obtained from the positive root of the quadratic
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equation in (8.73):

limt→∞‖(η(t), z(t))‖ ≤
2(a3 + a5) +

√
4(a3 + a5)2 + 2λmina6

λmin

‖ν‖max, (8.74)

and we expect this limit to be less than r, which yields the upper bound, δmax, on ‖ν‖max:

δmax :=
rλmin

2(a3 + a5) +
√

4(a3 + a5)2 + 2λmina6

. (8.75)

Therefore, we take the minimum value for the upper bound from (8.60),(8.61),(8.75) to

obtain δ = min{δr, δI , δmax} , resulting in exponential parameter to state stability ofO.

8.6 Simulation Results

In this section, we will investigate how the uncertainty in parameters affects the stability of

the controller applied to the 5-DOF bipedal robot AMBER1 shown in Fig. 6.1. The model,

Θa, which has 61 parameters is picked such that the error is 30% compared to the assumed

model Θ̂.

To realize walking on the robot, the actual and desired outputs are chosen as in [79]

(specifically, see (6) for determining the actual and the desired outputs). The result is

outputs of the form y(q) = ya(q) − yd(q), which must be driven to zero. Therefore, the

objective of the controller (8.23) with µ(η) ∈ Kε(η) and µ̄(η) ∈ K̄ε,ε̄(η) is to drive y → 0.

For the nominal model, Θ̂, a stable walking gait is observed. In other words, a stable hybrid

periodic orbit is observed for the assumed given model. Since, the actual model of the robot

has an error of 30%, applying the controller yields the dynamics that evolves as shown in

(8.25). The value of ε chosen was 0.1, and ε̄ was 10. Fig. 8.1 shows the comparison

between actual and desired outputs, and Fig. 8.2 shows the Lyapunov function Vε. It can

be observed that Vε is always within the bound ≈ 0.06, while ‖ν‖ takes large values at the

beginning and end of every step (implying that the control effort applied is large during
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those points).
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Figure 8.1: Actual (solid lines) and desired (dashed lines) outputs as a function of time are
shown here. Each figure corresponds to an output described to the left of the figures.

Fig. 8.3 shows the progression of the CLF over two steps with different values of the

auxiliary gain ε̄. Value of ε chosen was 0.05. Plots are shown for the first two steps as

opposed to the steady state behavior shown in Fig. 8.2. The measure norm ‖ν‖∞ remains

consistent (except during impacts) for different values of ε̄, resulting in lower ultimate

bounds.
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Figure 8.2: The RES-CLF (a), the measure (b) and the torque (c) as a function of time. V̇ε
(slope of Vε) crosses 0 in every step, but the CLF is still seen to be ultimately bounded. It
can also be observed that ‖ν‖ increases when the torque inputs are high.
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Figure 8.3: Progression of the measure, RES-CLF from the same initial point for different
values of the auxiliary gain ε̄ is shown in the figure. It appears that the ultimate bound
decreases with the auxiliary gain ε̄, thereby nullifying the effect of uncertain dynamics.
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CHAPTER 9

PHASE UNCERTAINTY TO STATE STABILITY

It is a well known fact that biological bipeds of the natural world emulate a spring loaded

inverted pendulum (SLIP) [85]. Robots PETMAN [113] and ATRIAS [86] have realized

walking behaviors based on this concept that have been robust to external disturbances. The

controllers are developed based on heuristics and involves a lengthy process of a continuous

reassessment and tuning of the parameters of the robot until the desired result is achieved.

This heuristics based approach is harder to scale and gets more and more difficult as the

complexity of the robot increases. The PETMAN that had the most robust walking behavior

during its time worked only a few times and has not beeen repeatable. Literature has shown

that the Hybrid Zero Dynamics (HZD) based approach [62], that uses a set of modulated

reference trajectories, is not just robust for a wide class of planar robots [79, 114] but also

repeatable. In fact, the success of this approach is backed by the formal stability results,

and the experiments are just an outcome of this rigorous analysis. Extension of the HZD

based approach from 2D to 3D robots is seamless with a slight alteration of the source of

modulation (see [4] for a video of DURUS walking in 3D). It was shown in [115] that a

time modulation of same desired trajectories that were constructed for state based trajectory

tracking control, also results in stable robotic walking.

Despite all the differences between the different approaches in bipedal walking such

as the ZMP based control [81, 82], capture points [83], controlled symmetries [84], SLIP

model [85, 86], HZD [62], null space control [87], at a fundamental level, using a set of

trajectories (gaits) as reference is still the common universal theme found in them. This

is formally called gait planning even though these reference gaits are strictly not adhered

to (not strictly tracked) in some approaches. As a direct consequence of using these ref-

erence gaits or reference trajectories, comes the issue of modulation of trajectories from
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start to end. History has shown that smooth and reliable modulation of the trajectories

is a really difficult problem, and there has been a lot of work solely dedicated to finding

good candidates for modulation [63]. As a slight deviation, our approach for tackling this

problem is by picking a better controller that can handle the noisy, non-smooth nature of

this modulation, this chapter will show how to choose robust control Lyapunov functions

that can handle this modulation uncertainty for the HZD based reference trajectories. This

technique is extended further via a rigorous theoretical and experimental analysis for all

kinds of legged locomotion (walking and running).

As the complexity of the robot increases (in terms of both DOF and dynamic behaviors),

the state dependency of the controller becomes more of a curse to the stability of the robot.

It was observed that in the humanoid robot DURUS (in Fig. 6.7), the uncertainty in the

phase variable caused unstable modulation of the desired trajectories leading to frequent

failures. It was also observed that a time substitution of the phase τ(t) caused a smoother

modulation of the desired trajectories leading to stable walking in DURUS (more in [115]).

The objective of this chapter is to show that a mix of time+state based implementation of

the phase variables yields a less perturbed modulation of the trajectories by using the notion

of ISS.

Stable periodic orbits on the Hybrid Zero Dynamics (HZD) are first constructed for a

given bipedal robot model. These orbits on the reduced order dynamics are then embed-

ded into the full order dynamics via the virtual constraints. These virtual constraints are

constructed by the desired trajectories that are modulated by what is called a phase vari-

able. The phase variable τ is usually a monotonic function of the n-DOF configuration

space q ∈ Rn. Suitable candidates are calf angle, hip position that propagate forward in

time. The state dependency of the modulation of the desired trajectories forms the basis for

realizing stable periodic orbits in the hybrid zero dynamics (HZD).

We establish the main result by choosing the time based virtual constraints (replacing

τ(q) with τ(t)). By studying both time and state based control Lyapunov functions (CLF)
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obtained from these virtual constraints (note that the concept of a time-based CLFs is not a

new one, see [116, 117]), we are able to establish stability conditions for a given periodic

orbit. Control Lypaunov functions that satisfy the ISS conditions yield an Input to State

Stable Lypaunov function, in other words an ISS-CLF. These results are extended to the

setting of hybrid dynamical systems—which naturally model bipedal walking robots. With

the assumption that there is an exponentially stable periodic orbit in the hybrid zero dy-

namics, we establish (bounded) stability of a gait under assumptions on the boundedness

of the phase uncertainty (which is a function of τ(q), τ(t) and their derivatives).

Theorem 21 shows that by picking a RES-CLF, exponentially stable hybrid periodic

orbits can be realized. But, due to the difficulty in accurately estimating the phase variable

τ(q) (which is mainly a function of the unactuated degrees of freedom of the robot), an al-

ternative approach is required. Motivated by the time based implementation of the tracking

controller in [115], we can construct a controller that uses a time based desired trajectory

instead of a state dependent trajectory. The result of using the time based trajectories is the

time dependent RES-CLF, which was shown in 5.1 (specifically (5.60)).

9.1 State Based vs. Time Based Control Laws

Given the controller (5.11) that drives the time based outputs ηt → 0, it is important to

compare the evolution of the state based outputs η. We will assume no modulation of

velocity outputs (constant yd1). Picking the input (5.11) on the dynamics of state based
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outputs y1, y2, we have

ẏ1

ÿ2

 =

Lfy1

L2
fy2

+

 Lgy1

LgLfy2

ut
ẏ1

ÿ2

 =

Lfy1

L2
fy2

+

 Lgy1

LgLfy2

u
︸ ︷︷ ︸

µ

+

 Lgy1

LgLfy2

 (ut − u)

︸ ︷︷ ︸
=:dẏ1

ÿ2

 =µ+ d, (9.1)

where d is obtained by substituting for ut, u (from (5.11),(5.5)). The expression for d can

be further simplified to get

d(t, q, q̇, q̈, µ, µt) = (µt − µ) +

 0

ÿd2(τ(t), α)− ÿd2(τ(q), α)

 . (9.2)

If the time and state based phase variables are closely matching during the duration of the

step, then it can be observed that d becomes small. Therefore d can be termed time-phase

uncertainty, or just phase uncertainty.

Going back to (9.1), we can reformulate (5.36) that results in the following representa-

tion:

η̇ = Fη +Gµ+Gd,

ż = Ψ(η, z). (9.3)

From the point of view of the state dependent outputs η, we have the following representa-
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tion dynamics of the Lyapunov function:

V̇ε = ηT (F TPε + PεF )η + 2ηTPεGµ+ 2ηTPεGd. (9.4)

By substituting µ ∈ Kε(η) obtained from (5.55), or by substituting for the joint actuators

u ∈ Kε(η, z) obtained from (5.56) , the following is obtained:

V̇ε ≤ −
γ

ε
Vε + 2ηTPεGd. (9.5)

It must be noted that even though time dependent RES-CLF leads to convergence of time

dependent outputs ηt → 0, (9.5) extends it to state based outputs η that are driven to an

ultimate bound, and this ultimate bound is explicitly derived from d.

We can extend this comparison to a wider class of controllers i.e., (9.5) can be obtained

even without using feedback linearization, i.e., by using the time based RES-CLF (5.60),

V̇ε = LfVε + LgVεut, ut(ηt, zt) ∈ Kt
ε(ηt, zt)

V̇ε = LfVε + LgVεu+ LgVε(ut − u), u(η, z) ∈ Kε(η, z)

≤ −γ
ε
Vε +

∂Vε
∂η

∂η

∂x
g(x)(ut − u), (9.6)

and picking Vε = ηTPεη, we have

V̇ε ≤ −
γ

ε
Vε + 2ηTPεGJD−1B(ut − u)︸ ︷︷ ︸

d

, J =

∂y1∂q̇
∂ẏ2
∂q̇

 (9.7)

where the expression for d consists of nonlinear functions of both time and state based

τ , J is the Jacobian matrix. By construction of the outputs it can be assumed that the

Jacobian is bounded by a constant. By Bounded Input Bounded Output (BIBO) stability

criterion, we know that the outputs y1, y2 will remain bounded given that d is bounded for

the linear dynamics (9.3). Inorder to extend this observation to a general RES-CLF for
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hybrid systems that also includes nonlinear impacts, we use the notion of Input to State

Stability (ISS) to establish boundedness of the state based outputs y1, y2 given that d is

bounded.

9.2 Phase to State Stability

We can now define the notion of Phase to State Stability below. A preliminary on Input to

State Stability is given in Chapter 2.

Definition 51. Assume a ball of radius r around the origin. The system given by (9.3) is

locally phase to η stable , if there exists β ∈ KL, and ι ∈ K∞ such that

|η(t)| ≤ β(|η(0)|, t) + ι(‖d‖∞),∀η(0) ∈ Br(0),∀t ≥ 0, (9.8)

and it is locally phase to state stable , if

|(η(t), z(t))| ≤ β(|(η(0), z(0))|, t) + ι(‖d‖∞),

∀η(0) ∈ Br(0),∀t ≥ 0.

We will first prove phase to η stability, and then include the zero dynamics to show

phase to state stability. Based on the asymptotic gain and zero stability property of the

system (9.3) w.r.t. the phase uncertainty d, we have the following lemma.

Lemma 27. The class of all feedback control laws u(ηt, zt) ∈ Kt
ε(ηt, zt) (time based RES-

CLF (5.31)) applied on the system (6.26) yields phase to η stability in the continuous dy-

namics. Moreover, ∀δ > 0, ∃ bη > 0 such that ‖d‖ ≤ δ =⇒ limt→∞ Vε(η(t)) ≤ bη.

Proof. We will utilize Lemma 2 to prove the stability property here. The Zero Stability

(ZS) property is satisfied by construction. The Asymptotic Gain (AG) property is shown

below (see Fig. 2.1).
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By applying the bounds on (9.5) we have the following constraint:

V̇ε = −γ
ε
Vε + 2ηTPεGd ≤ −

γ

ε
Vε + 2‖η‖‖Pε‖‖d‖

γ

ε
Vε > 2‖η‖c2δ

ε2
=⇒ V̇ε < 0

γ

ε
c1‖η‖2 > 2‖η‖c2δ

ε2
=⇒ V̇ε < 0.

‖η‖ > 2
c2δ

c1εγ
=⇒ V̇ε < 0. (9.9)

The ultimate bound bη is obtained when the equality holds (when V̇ε = 0). Since Vε(η) ≥

c1‖η‖2 from (3.16) we have
√
Vε(η)/c1 ≥ ‖η‖, bη is therefore obtained as a function of

δ, ε:

bη =
4c2

2δ
2

c1ε2γ2
. (9.10)

Dependence on ε shows that the ultimate bound gets larger as the desired convergence rate

increases.

We can also realize exponential phase to state stability of the continuous dynamics by

appending a state based linear feedback law to the time based feedback linearizing control

(5.11):

ut+q = ut + uq, (9.11)

which results in the following output dynamics in the place of (9.1):

ẏ1

ÿ2

 = µ+ d+

 Lgy1

LgLfy2

uq. (9.12)
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By the choice of the outputs, the matrix By =

 Lgy1

LgLfy2

 is invertible. By applying (9.11),

(9.3) will have an extra input uq that yields:

η̇ = Fη +Gµ+Gd+GByuq

ż = Ψ(η, z). (9.13)

(9.5) then gets reformulated as:

V̇ε ≤ −
γ

ε
Vε + 2ηTPεGd+ 2ηTPεGByuq. (9.14)

By picking a particular control law for the auxiliary input: uq = − 1
2ε̄
B−1
y GTPεη, we have

the following simplification of (9.14):

V̇ε ≤ −
γ

ε
Vε + 2ηTPεGd−

1

ε̄
ηTPεGG

TPεη. (9.15)

Therefore, by defining the semi-definite Lyapunov function V̄ε(η) = ηTPεGG
TPεη, we can

pick ε̄ small enough to cancel the effect of phase uncertainty on the dynamics. Motivated

by (9.15), we can realize a class of controllers for the state based linear feedback law uq as

Kq
ε,ε̄(η, z) = {uq ∈ U : LgVεuq +

1

ε̄
V̄ε ≤ 0}, (9.16)

where

LgVε = 2ηTPεGBy. (9.17)

Note that V̄ε = 1
4
LgV B

−1
y B−Ty LgV

T . Based on the construction of (5.60) and (5.62), we

can realize the classes of controllers that combines both the time and state based imple-
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mentations

u = ut + uq

Kt
ε = {ut ∈ U : LfV

t
ε + LgV

t
ε ut +

γ

ε
V t
ε ≤ 0}

Kq
ε,ε̄ = {uq ∈ U : LgVεuq +

1

ε̄
V̄ε ≤ 0}, (9.18)

Lemma 27 can now be redefined to obtain exponential phase to state stability via the

new control input (9.11).

Lemma 28. The class of all time+state based feedback control laws ut(ηt, zt) ∈ Kt
ε(ηt, zt),

uq(η, z) ∈ Kq
ε,ε̄(η, z) applied on the system (6.26) yields exponential phase to η stability

in the continuous dynamics. Moreover, there exists an exponential ultimate bound bη such

that limt→∞ Vε(η(t)) ≤ bη.

Proof. Denote P̄ε = PεGG
TPε ≥ 0. Since Pε is symmetric and positive definite, we

know that ηTPεGGTPεη = ‖ηTPεG‖2. Therefore, if η falls in the null space of P̄ε, i.e.,

ηT P̄εη = 0 =⇒ ‖ηTPεG‖ = 0 =⇒ ηTPεG ≡ 0.

Therefore, if η ∈ N (P̄ε), the null space, then the exponential stability is established.

Otherwise, ηT P̄εη > 0. Therefore we can follow the steps in (9.9) with the semi-definite

Lyapunov function V̄ε(η).

1

ε̄
V̄ε > 2‖η‖c2δ

ε2
=⇒ V̇ε < −

γ

ε
Vε

1

ε̄
c2

1‖η‖2 > 2‖η‖c2δ

ε2
=⇒ V̇ε < −

γ

ε
Vε.

‖η‖ > 2
c2δε̄

c2
1ε

2γ
=⇒ V̇ε < −

γ

ε
Vε. (9.19)

The exponential ultimate bound bη is obtained when the equality holds. Since V̄ε(η) ≥

c2
1‖η‖2 for η 6∈ N (P̄ε), we have

√
V̄ε(η)/c1 ≥ ‖η‖; bη is therefore obtained as a function
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of δ, ε, ε̄:

bη =
4c2

2δ
2ε̄2

c2
1ε

4γ2
. (9.20)

It must be noted that Lemma 28 =⇒ Lemma 27 and is a stronger form of stability.

Describing the bounds in terms of the coordinates η,

‖η(t)‖ ≤ 1

ε

√
c2

c1

e−
γ
2ε
t‖η(0)‖, ∀Vε(η(t)) ≥ bη. (9.21)

Stability of Continuous Periodic Orbits. Assume that there is an exponentially stable pe-

riodic orbit in the partial (full for running) zero dynamics, as denoted byOz (see (5.81) for a

formal definition of periodic orbit). For the periodic orbit on the zero dynamics, we have the

periodic orbit of the full order dynamics via the canonical embedding Π0(Oz) = O. Since,

the analysis is only for continuous dynamics, the domain notation is ignored. ‖(y1, z)‖Oz ,

as mentioned in (5.83), represents the distance between z and nearest point on the periodic

orbitOz. Let Φz be the transformation from the partial (full) zero dynamics manifold to the

zero coordinates. This means that there is a Lyapunov function Vz : Φz(PZ) → R≥0 such

that in a neighborhood Br(Oz) of Oz (by converse Lyapunov theorem [112]) such that

c4‖(y1, z)‖2
Oz ≤ Vz(y1, z) ≤ c5‖(y1, z)‖2

Oz ,

V̇z(y1, z) ≤ −c6‖(y1, z)‖2
Oz ,∣∣∣∣∣∣∣∣ ∂Vz

∂(y1, z)

∣∣∣∣∣∣∣∣ ≤ c7‖(y1, z)‖Oz . (9.22)

Define the composite Lyapunov function: Vc(η, z) = σVz(y1, z) + Vε(η), we can estab-

lish boundedness of the dynamics of the robot when ‖d‖ is bounded. In other words, we

have the following theorem, which establishes phase to state stability of periodic orbits in
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continuous systems.

Theorem 7. Given that the periodic orbit Oz of the partial zero dynamics is exponen-

tially stable, and given the controller ut+b as given by (9.11), with ut(ηt, zt) ∈ Kt
ε(ηt, zt),

uq(η, z) ∈ Kq
ε,ε̄(η, z) applied on (9.13), that render the outputs η stable w.r.t. d, then the

periodic orbitO = Π0(Oz) obtained from the canonical embedding is phase to state stable

.

Proof. Upper bounds and lower bounds on the Vc can be defined as:

Vc(η, z) ≤ max{σc5,
c2

ε2
}(‖(y1, z)‖2

Oz + ‖η‖2),

Vc(η, z) ≥ min{σc4, c1}(‖(y1, z)‖2
Oz + ‖η‖2), (9.23)

Therefore, taking the derivative:

V̇c(η, z) = σ
∂Vz
∂z

Ψ(y1, 0, z) + σ
∂Vz
∂y1

ẏ1 . . . (9.24)

+ σ
∂Vz
∂z

(Ψ(η, z)−Ψ(y1, 0, z)) + V̇ε(η),

≤ −σc6‖(y1, z)‖2
Oz + σc7Lq‖(y1, z)‖Oz‖η2‖+ V̇ε(η),

≤ −σc6‖(y1, z)‖2
Oz + σc7Lq‖(y1, z)‖Oz‖η‖+ V̇ε(η),

where Lq is the Lipschitz constant for Ψ in (9.3). Substituting (9.15) for V̇ε leads to the

following expression for the Lyapunov function:

V̇c ≤− σc6‖(y1, z)‖2
Oz + σc7Lq‖(y1, z)‖Oz‖η‖

− γ

ε
Vε −

1

ε̄
V̄ε + 2‖η‖‖Pε‖‖d‖ (9.25)

V̇c ≤− σc6‖(y1, z)‖2
Oz + σc7Lq‖(y1, z)‖Oz‖η‖

− γ

ε
Vε −

1

ε̄
c2

1‖η‖2 + 2‖η‖‖Pε‖‖d‖
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With ε̄ small enough, the right most expression can be canceled if Vε(η) > bη (Lemma 28.

Therefore, for exponential convergence of Vc, σ is picked such that c6c1
γ
ε
− σ

c27L
2
q

4
> 0,

giving the desired result.

It is assumed that (y1, z) ∈ Br(Oz) =⇒ ‖(y1, z)‖Oz < r. In other words,

c5‖(y1, z)‖2
Oz < c5r

2. Therefore, pick bz := σc5r
2. Therefore the ultimate bound for

Vc(η, z) can be obtained as: limt→∞ Vc(t) ≤ σc5‖(y1, z)‖2
Oz + limt→∞ Vε(η(t)) ≤ bz + bη,

where bη is obtained from Lemma 28.

9.3 Main Theorem

We can now introduce the main theorem of the paper. Note that we will reuse the constants

used in Chapter 8 by redenoting. Similar to the continuous dynamics, it is assumed that the

periodic orbit Oz is exponentially stable in the hybrid zero dynamics. We will reintroduce

the domain representation for this case. The multi-domain periodic orbit of the hybrid zero

dynamics is defined in (5.81). The corresponding periodic orbit of the full order dynamics

is O, which is given by (5.82).

Theorem 8. Let Oz be an exponentially stable periodic orbit of the partial hybrid zero

dynamics IHc|z transverse to Sc|z. Given the controller ut + uq applied on the hybrid

control system IHCc, with ut(ηt,v, zt,v) ∈ Kt
ε(ηt,v, zt,v) for each v ∈ Vc, uq(ηv, zv) ∈

Kq
ε,ε̄(ηv, zv), and given r > 0 such that (ηv, zv) ∈ Br(O), ∃ δ, ε̂ > 0 such that whenever

‖d‖ < δ, ε < ε̂, the orbit O is ultimately bounded by b = bη + bz. In other words, the

periodic orbit O is phase to state stable.

Before proving the main theorem, we will introduce new notations that are required to

represent both continuous and discrete transitions as functions of (ηv, zv). Based on the

construction of the reset map (plastic impacts), it is well known that they are Lipschitz

in the state variable x. x are in turn Lipschitz in (ηv, zv) due to the diffeomorphism Φv.
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Therefore, by doing the transformation

∆y1,e(y1,v− , η2,v− , zv−) = Φ1,v+(∆e(Φ
−1
v−(ηv− , zv−))),

∆η2,e(y1,v− , η2,v− , zv−) = Φ2,v+(∆e(Φ
−1
v−(ηv− , zv−))),

∆z,e(y1,v− , η2,v− , zv−) = Φ3,v+(∆e(Φ
−1
v−(ηv− , zv−))), (9.26)

where e = (v−, v+), we have the following inequality:

‖∆y1,e(y1,v− , η2,v− , zv−)−∆y1,e(0, η2,v− , zv−)‖ ≤ L1,e‖y1,v−‖ ≤ L1,e‖ηv−‖,

‖∆η2,e(y1,v− , η2,v− , zv−)−∆η2,e(y1,v− , 0, zv−)‖ ≤ L2,e‖η2,v−‖ ≤ L2,e‖ηv−‖,

‖∆z,e(y1,v− , η2,v− , zv−)−∆z,e(y1,v− , η2,v− , 0)‖ ≤ L3,e‖zv−‖, (9.27)

where L1,e, L2,e, L3,e are the Lipschitz constants. Some of the notations in (9.27) contain

the subscripts v−, v+, e, to indicate the domain (5.6), and are sometimes suppressed:

y1

η2

 =

y1,v

η2,v

 = η = ηv, z = zv (9.28)

where v− = source(e), v+ = target(e) based on the domain and range space of the switch-

ing map, ∆e, respectively. Since the surface PZv is invariant under the discrete dynamics,

∆η2,e(y1,v− , 0, zv−) = 0, for all e.

For the periodic orbit Oz, there is also the periodic execution given by (5.4.2). There-

fore, for the set of vertices Vc = (v1, v2, . . . , vl), denote (η∗vi , z
∗
vi

) := Φvi(C
z
i (ti)), which is

the initial point in every domain. The cycle repeats after l iterations.

Since the number of domains and guards remain the same in a cycle (which also alter-

nate with each other), we will use the same subscripts for both domain and guard represen-

tations (in a cycle, every domain has a unique guard associated with it). Associated with

the hybrid periodic orbit O (see (5.82) for the definition of hybrid periodic orbits) is the
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time to impact function T = Tv1 + Tv2 + · · ·+ Tvl , where each Tvi is defined by:

Tvi(ηvi , zvi) = min{t ≥ 0|ϕvi
t (ηvi , zvi) ∈ Φvi(Svi)}, (ηvi , zvi) ∈ B(η∗vi , z

∗
vi

). (9.29)

and obtained through the implicit function theorem via the function

Hvi(t, y1,vi , η2,vi , zvi) = h(ϕvi
t (y1,vi , η2,vi , zvi)),

for which Hvi(Tvi , y
∗
1,vi
, η∗2,vi , z

∗
vi

) = 0. (η∗vi , z
∗
vi

) corresponds to the starting point of the

periodic orbit in the domain Dvi .

Given the initial state (η∗v, z
∗
v) in the guard, Sv of v ∈ Vc, the time to impact function

is the time taken to reach the same guard (Sv) the next time. Since, by assumption on Sv,

∂Hv

∂t
(Tv, y

∗
1,v, η

∗
2,v, z

∗
v) < 0 for every v ∈ Vc, the implicit function theorem implies that each

Tvi is well defined in a neighborhood of (y∗1,vi , η
∗
2,vi
, z∗vi). Therefore, Tv(η∗v, z

∗
v) = T ∗v . Each

Hv(t, y1,v, η2,v, zv) is Lipschitz continuous since it is differentiable in t, hv is assumed to be

continuously differentiable, and ϕv
t (ηv, zv) is Lipschitz continuous, and therefore the sum

of the time to impact functions T is also Lipschitz.

A hybrid periodic orbit Oz, of IHc|z has the Poincaré map ϑv : Sv|z → Sv|z is termed

the restricted Poincaré map. Therefore, for the point (y1,v1 , 0, zv1) ∈ Sv1

ϑv1(y1,v1 , zv1) = ϕz,vlTϑvl
◦∆vl−1

· · · ◦ ϕz,v2

Tϑv2
(y1,v2 ,zv2 ) ◦∆v1(y1,v1 , 0, zv1), (9.30)

where ϕz,vt is the flow of the partial hybrid zero dynamics and Tϑv is the restricted time to

impact function, which is given by Tϑv(y1,v, zv) = T (y1,v, 0, zv). Therefore Tϑ is the sum

of the individual time-to-impact functions. Without loss of generality, we can assume that

the relative degree two outputs η∗2,v = 0, the zero dynamic coordinates z∗v = 0, but the

relative degree one output y∗1,v 6= 0. Therefore, we can denote ζv = (y1,v − y∗1,v, zv), such

that the fixed point (y∗1,v, 0, z
∗
v) =⇒ ζv = 0 . The following Lemma will introduce the
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Figure 9.1: Figure showing the bound b = bη + bz on the periodic orbit for a two domain
hybrid system. Phase to state stability ensures that a bounded periodic orbit exists under a
bounded uncertainty.

relationship between time to impact, Poincaré functions with the state ηv. We will drop the

domain notation, because the Poincaré maps do not change domains.

Lemma 29. Let Oz be the periodic orbit of the hybrid zero dynamics IHc|z transverse

to Sc|z. Given the time+state based feedback controller ut+q that render the system η

stable, then there exist finite constants A1, A2 such that for all (η, z) ∈ Br(η∗, z∗) ∩ S and

Vε(∆η(η, z)) > bη:

‖T (η, z)− Tϑ(y1, z)‖ ≤ A1‖η2‖ (9.31)

‖P(η, z)− ϑ(y1, z)‖ ≤ A2‖η2‖ (9.32)

Proof. Instead of considering all the domains together, here, we study one domain and ob-

tain bounds on the states till the next impact event. This procedure is repeated l times to

yield the final upper bounds on the states of the system as a function of the disturbance

input. For each domain, we construct an auxiliary time to impact function TBv that is Lip-

schitz continuous and then relate it to T . Let µ1,v ∈ R2n−k1,v−2k2,v , µ2,v ∈ Rk1,v+2k2,v be

constant vectors and let ϕz,vt (y1,v(0), 0, zv(0)) be the solution of the partial hybrid zero dy-
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namics with the initial condition zv(0) = ∆z,v(η0, 0, z0), y1,v(0) = ∆y1,v(η0, 0, z0). Define:

TB,v(µ1,v, µ2,v, y1,v, zv) = inf{t ≥ 0 : h(µ1,v, ϕ
z,v
t (y1,v(0), 0, zv(0)) + µ2,v) = 0}

It follows that TB,v(0, 0, y1,v, zv) = Tϑv(y1,v, zv). By construction, TB,v is Lipschitz con-

tinuous. Hence in the norm ‖(µ1,v, µ2,v, y1,v, zv)‖ = ‖µ1,v‖+ ‖µ2,v‖+ ‖y1,v‖+ ‖zv‖,

‖TB,v(µ1,v, µ2,v, y1,v, zv)− Tϑv(y1,v, zv)‖ ≤ LB,v(‖µ1,v‖+ ‖µ2,v‖), (9.33)

where LB,v is the local Lipschitz constant. We note that Tv(ηv, zv) is continuous and there-

fore there exists r > 0 such that for (ηv, zv) ∈ Br(η∗v, z∗v) ∩ Sv: c8T
∗
v ≤ Tv(ηv, zv) ≤ c9T

∗
v ,

where 0 < c8 < 1 and c9 > 1. Let (ηs1,v(t), ηs2,v(t), zsv(t)) be the time solution that satisfy

żs = Ψv(ηs2,v(t), ηs1,v(t), zsv(t)), η̇s1,v(t) = −1
ε
ηs1,v(t) that includes different domains and

switching surfaces. Similarly let (ηs
′

1,v(t), zs
′

v (t)) be the second solution that satisfies

żs
′

v (t) = Ψv(ηs
′

1,v(t), 0, zs
′

v (t)), η̇s′1,v(t) = −1
ε
ηs
′

1,v(t). We can now determine µ1,v, µ2,v.

Since Vε(η) > bη, by using (9.21) we have

‖ηs2,v1
(Tv1)‖ = ‖ηs2,v1

(t)‖t=Tv1 (ηv1 ,zv1 ) ≤
√
c2

c1

1

ε
e−

γ
2ε
c8Tv1‖ηs2,v1

‖,

‖ηs2,v2
(Tv2)‖ = ‖ηs2,v2

(t)‖t=Tv2 (ηv2 ,zv2 )

≤
√
c2

c1

1

ε
e−

γ
2ε
c8Tv2L2,v1‖ηs2,v1

(Tv1)‖, (9.34)

(9.34) yields ‖µ1,v‖ for all v. To obtain ‖µ2,v‖, we use the Gronwall-Bellman argument.

We know that:ηs1,v(t)− ηs′1,v(t)

zsv(t)− zs′v (t)

 =

ηs1,v(0)− ηs′1,v(0)

zsv(0)− zs′v (0)

+ . . .

∫ t

0

 −1
εη

s
1,v(τ) + 1

εη
s′
1,v(τ)dτ

Ψ(ηs1,v(τ), ηs2,v(τ), zsv(τ))−Ψ(ηs
′

1,v(τ), 0, zs
′

v (τ))dτ

 ,
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and therefore by using (9.27) and using the property of Lipschitz continuity of Ψv:

ζsv(t)− ζs′v (t) :=

ηs1,v(t)− ηs′1,v(t)

zsv(t)− zs′v (t)


‖ζsv(t)− ζs′v (t)‖ ≤ ‖ζsv(0)− ζs′v (0)‖+∫ t

0
Lq(‖ηs2,v(τ)‖+ ‖ζsv(τ)− ζs′v (τ)‖)dτ

≤ ‖ζsv(0)− ζs′v (0)‖+
2

γ

√
c2

c1
Lq‖ηs2,v(0)‖+∫ t

0
Lq‖ζsv(τ)− ζs′v (τ)‖dτ, (9.35)

where (9.34) is integrated and substituted in the above equation. By Gronwall-Bellman

inequality,

‖ζsv2
(t)− ζs′v2

(t)‖ ≤ C1‖ηs2,v1
(Tv1)‖eLqt (9.36)

C1 = maxv∈Vc{ 2
γ

√
c2
c1
LqL2,v + 2 max{L1,v1 , L3,v1}}.

Therefore, we have:

‖µ2,v2‖ ≤ ‖ζsv2
(T ∗v2

)− ζs′v2
(T ∗v2

)‖ ≤ C1e
LqTv2‖µ1,v1‖ (9.37)

Proof of (9.31) can now be obtained by substituting for ‖µ1,v‖, ‖µ2,v‖ after repeating l

times. Total time can now be obtained as: TB = TB,v1 + TB,v2 + · · ·+ TB,vl .

To prove (9.32), define:

C2 = max
c8T ∗v≤Tv≤c9T ∗v ,v∈Vc

∥∥∥∥∥∥∥
 −1

ε
ηs
′

1,v(t)

Ψv(ηs
′

1,v(t), 0, zs
′

v (t))


∥∥∥∥∥∥∥ , (9.38)

also define Pz as the projection of the Poincaré map to the partial zero dynamic surface. It
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then follows that:

‖Pz(ηs1,v, ηs2,v, zsv)− ϑ(ηs
′

1,v, z
s′

v )‖ ≤ ‖ζsv(0)− ζs
′

v (0)‖

+Σv∈Vc

∫ Tv(ηv,zv)

0

∥∥∥∥∥∥
 − 1

εη
s
1,v(τ) + 1

εη
s′

1,v(τ)

Ψv(ηs1,v(τ), ηs2,v(τ), z1,v(τ))−Ψv(ηs
′

1,v(τ), 0, zs
′

v (τ))

∥∥∥∥∥∥ dτ
+Σv∈Vc

∫ Tϑv (z)

Tv(ηv,zv)

∥∥∥∥∥∥
 − 1

εη
s′

1,v(τ)

Ψv(ηs
′

1,v(τ), 0, zs
′

v (τ))

∥∥∥∥∥∥ dτ,
which results in the following inequality after a series of substitutions:

‖Pz(ηs1,v, ηs2,v, zsv)− ϑ(ηs
′

1,v, z
s′

v )‖ ≤ CT‖ηs2,v‖+ C2A1‖ηs2,v‖. (9.39)

Collecting the terms together yields the desired result.

Proof of Main Theorem. We can now prove the main theorem by using the inequalities

obtained from Lemma 29.

Proof of Theorem 8. Results of Lemma 29 and the exponential stability of Oz imply that

there exists r > 0 such that ϑ : Br(0) ∩ S|z → Br(0) ∩ S|z is well defined for all ζ ∈

Br(0)∩S|z and ζk+1 = ϑ(ζk) is locally exponentially stable, i.e., ‖ζi‖ ≤ Nξi‖ζ0‖ for some

N > 0, 0 < ξ < 1 and all i ≥ 0. Therefore, by the converse Lyapunov theorem for discrete

systems, there exists a Lyapunov function Vϑ, defined on Br(0) ∩ Sc|z for some r > 0

(possibly smaller than the previously defined r), and positive constants c10, c11, c12, c13 such

that :

c10‖ζ‖2 ≤ Vϑ(ζ) ≤ c11‖ζ‖2,

Vϑ(ϑ(ζ))− Vϑ(ζ) ≤ −c12‖ζ‖2,

|Vϑ(ζ)− Vϑ(ζ ′)| ≤ c13‖ζ − ζ ′‖.(‖ζ‖+ ‖ζ ′‖), (9.40)

where ζ consists of z and shifted y1 as defined before. It must be first ensured that the
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region bη, which is a function of δ must be within the bounds defined by r. For ‖η‖ = r,

bη < Vε(η) is ensured through the following condition: bη < Vε(η) ≤ c2
ε2
‖η‖2 ≤ c2

ε2
r2.

From Lemma 27 we have: 4c22δ
2

c1γ2ε2
< c2

ε2
r2 =⇒ δ <

√
c1γ

2
√
c2
r. We can choose δ =

√
c1γ

4
√
c2
r to

leave enough margin for the outputs to rapidly exponentially converge within Br(0, 0). By

closely matching τ(t) with τ(q), the full dynamics of the system can be restricted to the

bound bη.

For the RES-CLF Vε, denote its reduced Lyapunov function (of only η2 coordinates)

and restriction to the switching surface by Vε,η2 . The domain index v ∈ Vc is conveniently

picked and fixed. In the walking robot, we pick the end of the single support phase ss

as the restriction. With these two Lyapunov functions we define the following candidate

Lyapunov function:

VP (η, z) = Vϑ(ζ) + σVε,η2(η2) (9.41)

defined on Br(0, 0) ∩ Sv. The lower and upper bounds on VP are min{c10, σc1}‖(η, z)‖2,

max{c11,
σc2
ε2
}‖(η, z)‖2 respectively. The idea is to show that there exists a bounded region

b = bη + bz into which the dynamics of the robot exponentially converge (see Fig. 9.1).

If the outputs enter this region then it stays for all time even through impacts. Picking

a point η such that Vε(η) = bη, we have the the maximum value for η, which is given

by ‖η‖max =
√

bη
c1

. Also, we know that ηs2(0) = ∆η2(η, z). If Vε(ηs(0)) ≤ bη, then

the boundedness is verified. For the case when the impact map takes the outputs outside

the bounded region (by utilizing (9.21)), we pick the lower bound on the time to impact

function. We will ignore the subscript notations for the states (ηv, zv). The Poincaré map
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P can be split into two components Pη2 ,Pz. Therefore

Vε,η2(Pη2(η, z)) ≤ . . .
c2

ε2
e−

γ
ε
Tv2L2

2,v2

c2

ε2
e−

γ
ε
Tv1L2

2,v1︸ ︷︷ ︸
A3

‖η2‖2

≤ A3‖η2‖2. (9.42)

We have the following:

Vε,η2(Pη2(η, z))− Vε,η2(η2) ≤ A3‖η2‖2 − c1‖η2‖2

Since the origin is an exponentially stable equilibrium for zk+1 = ϑ(zk), we have the

following inequalities:

‖Pz(η, z)‖ = ‖Pz(η, z)− ϑ(ζ) + ϑ(ζ)− ϑ(0)‖

≤ A2‖η2‖+ Lϑ‖ζ‖

‖ϑ(ζ)‖ ≤ Nξ‖ζ‖, (9.43)

where Lϑ is obtained after including the discrete and continuous dynamics and picking the

maximum rate or change of ϑ. Therefore:

Vϑ(Pz(η, z))− Vϑ(ϑ(ζ)) ≤ c13(A2‖η2‖).(A2‖η2‖+ (Lϑ +Nξ)‖ζ‖). (9.44)

It follows that:

Vϑ(Pz(η, z))− Vϑ(ζ) = Vϑ(Pz(η, z))− Vϑ(ϑ(ζ))

+Vϑ(ϑ(ζ))− Vϑ(ζ), (9.45)

and the expressions in (9.44) and in (9.40) can be substituted. Combining the entire Lya-
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punov function we have:

VP (P(η, z))− VP (η, z) ≤ −

 ‖η2‖

‖ζ‖


T

ΛH

 ‖η2‖

‖ζ‖

 (9.46)

where the symmetric matrix ΛH ∈ R2×2, with the upper triangular entries being:

a1 = ΛH(1, 1) =σ(c1 − A3)− c13A
2
2

a2 = ΛH(1, 2) =− c13A2

2
(Lϑ +Nξ)

a3 = ΛH(2, 2) =c12 (9.47)

For exponential convergence, it must be shown that :

VP (P(η, z))− VP (η, z)

≤ −a1‖η2‖2 − 2a2‖η2‖‖ζ‖ − a3‖ζ‖2, (9.48)

results in a positive definite matrix ΛH, which can be ensured by picking ε, σ such that

a1a3 − a2
2 > 0. ε̂ is picked such that c1 − A1L

2
1 > 0, and σ such that a1a3 − a2

2 > 0.

Fig. 9.1 depicts the periodic orbitO and its tube, which is defined by the bound b. Note

that the bound b is defined on the Lyapunov function that is a function of a norm of the

distance between the state and the periodic orbit O. Theorem 8 means that by using a time

dependent RES-CLF, any trajectory starting close to the tube will ultimately enter the tube

defined by b as long as ‖d‖ < δ.

9.4 Simulation and Experimental Results

Walking. DURUS consists of fifteen actuated joints throughout the body and one linear

passive spring at the end of each leg. The generalized coordinates of the robot are described
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in Fig. 6.7 (see [64]). Due to the presence of passive springs, the double-support domain

is no longer trivial. Therefore, a two-domain hybrid system model is utilized to model

DURUS walking, where a transition from double-support to single-support domain takes

place when the normal force on non-stance foot reaches zero, and a transition from single-

support to double support domain occurs when the non-stance foot strikes the ground [64].

Since there is no impact while transitioning from double-support to single-support, the

discrete map is an identity. The holonomic constraints are defined in such a way that feet

are flat on the ground when they are in contact with the ground. In addition, DURUS is

supported by a linear boom that restricts the motion of the robot to the sagittal plane. The

contacts with the boom are also modeled as holonomic constraints.

The combined outputs of the system are defined as ya(q) = [ya1 , y
a
2
T ]T and yd(τ, α) =

[vhip, y
d
2(τ, α)

T
]T , and the feedback control law in (9.18) is applied on the system. Fig. 9.4

shows phase portraits, Fig. 9.2,Fig. 9.3 show the comparison of the phase variable for

walking and running respectively, Fig. 9.6 shows the walking tiles. The error between the

phase variables is low for simulation ‖d‖max < 9. See [5] for the corresponding movie.

Running. By utilizing time based feedback linearization + state based PD control law

given by (9.11) in simulation, trajectory tracking is achieved that is ultimately bounded to

the periodic orbit. For the experimental realization, a variant of time+state based feedback

as shown by (9.50) is utilized and the result is sustainable running taking over 150 steps
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Figure 9.2: Progression of time vs. the phase variable shown for the walking simulation
(left) and experiment (right).
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Figure 9.3: Progression of time vs. the phase variable shown for the running simulation
(left) and experiment (right).

(see [6] for the video). Multiple views in the video show that the running is repeatable. The

phase portrait over 30 steps are shown at Fig. 9.4. The average running speed is 1.75 m s−1.

Further, the time based and state based phase variables τ(t) and τ(x) are shown together

with those from simulation at Fig. 9.3. The running tiles of both simulations and experiment
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Figure 9.4: Phase portraits of the ankle, knee, hip and waist pitch angles of the robot. Both
simulation (S) and experimental (E) results are shown.
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Figure 9.5: Limit cycles of simulations (left) and experiment (right), are shown for the
running robot DURUS-2D. Both used the time based desired outputs: yd2(t) = yd2(τ(t), α).

are compared at Fig. 9.7.

Figure 9.6: Figure showing the walking tiles of DURUS humanoid for one step. Video link
to the experiment is given in [5].

Experimental Controller. Motivated by the successful run of the 3D humanoid robot

DURUS, the following time+state based controller was implemented in the robot: The

linear feedback laws picked are (9.11). For the experimental setup, the time and state

based outputs are picked through the inverse diffeomorphism applied (see [67]) to obtain

187



0 ms 70 ms 140 ms 210 ms 280 ms 350 ms 420 ms

0 ms 70 ms 140 ms 210 ms 280 ms 350 ms 420 ms

Figure 9.7: Running tiles of simulation vs experiment for the running robot DURUS-2D.
Video link to the experiment is given in [6].

the desired configuration angles (qd) and their derivatives (q̇d).qd
q̇d

 = Φ−1(η, z),

qtd
q̇td

 = Φ−1
t (ηt, zt) (9.49)

A linear feedback law is then applied as the torque input

uW =− 1

ε2
Kt
P (q − qtd)−

1

ε
Kt
D(q̇ − q̇td), (9.50)

for the walking robot, and

uR =− 1

ε2
Kt
P (q − qtd)−

1

ε
Kt
D(q̇ − q̇td)

− 1

ε̄ε2
KP (q − qd)−

1

ε̄ε
KD(q̇ − q̇d), (9.51)

for the running robot. Kt
P , K

t
D, KP , KD are constant gain matrices with appropriately

tuned values.
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CHAPTER 10

APERIODIC SYSTEMS: DYNAMIC DANCING

As a means to show ISS based control implementations for non-periodic systems, this

chapter focuses on utilizing time based PD controllers for dynamic dancing. The primary

goal is to connect trajectories, i.e., desired outputs yd, for each motion primitive; that is,

we wish to compose dynamical systems. To this end, this section will present the notion of

meta-dynamical systems, which gives a formalism to the notion of composition. We begin

by studying different poses of the robot that will be connected through dynamic transitions.

10.1 Basic Definitions

10.1.1 Pose

A pose of a robot is a configuration q, which is intended to be realized in the robot. In other

words, a pose is just a captured frame of a robot while in motion. For example, a robot

with hip forward and low and both feet flat is a crouch, and is called a pose of the robot.

There are several possible poses that the robot can assume. The poses are picked from the

eight domain representations shown in Fig. 4.3. If the stance toe is always on ground (since

jumping is not included), the three remaining points (non-stance toe and heel and stance

heel) can be either in contact or not. Therefore, there are eight possible general cases for

pose generation. Accordingly, we will include: front heel lift (FHL), front toe lift (FTL),

back heel lift (BHL), all feet flat on ground (FF), swing (S) with stance foot being flat on

ground, double heel lift (DHL), front toe and back heel lift (FTBH), and under-actuation

(UA) with only stance toe in contact with ground.

It is important to note that there could be more than one pose obtained from each domain

D, i.e., more than one type of Back Heel Lift, Front Toe Lift, and other combinations as

189



well. In other words, there are more than eight types of poses. For example, we could have

two different kinds of flat footed poses, where the vertical hip position is high for one and

low for the other. This will be discussed further in Section 10.4 where the poses of dancing

on AMBER2 are introduced. If a set of poses q1, q2, . . . , qi is used, then dancing is achieved

by just executing dynamic transitions between these poses.

10.1.2 Dynamic Transition

Let x = (qT , q̇T ) ∈ R2n, and ẋ = fcl(x) be a closed loop dynamical system Let ϕ(t;x0) be

the solution to ẋ = f(x) at time t ∈ R with initial condition x0, and let πq be the canonical

projection πq(x) = q.

Definition 52. A dynamic transition between two poses, q0 and qf , is a solution ϕ(t;x0) to

the dynamical system ẋ = fcl(x) such that there exists a point x0 ∈ R2n and a time tf ≥ 0

with πq(ϕ(0;x0)) = q0 and πq(ϕ(tf ;x0)) = qf .

This transition is achieved by applying a suitable control law on the robot. Note that this

transition involves going through multiple domains due to different foot conditions and the

impacts. In other words, the transition is piecewise smooth, and is hybrid in nature. For a

successful implementation of this transition, we need to ensure that the controllers utilized

satisfy the ISS properties required of any stable hybrid transition. This definition allows us

to formally introduce meta-dynamical systems.

Definition 53. The meta-dynamical system is defined as a tuple:

MD = (G ,P,T ), (10.1)

• G is a directed graph given as: G = (V ,E ), where V is the set of vertices describing

desired poses realizable on the robot, and E represents transitions between these

poses. We denote the source and target of an edge e ∈ E by source(e) ∈ V and

target(e) ∈ V .
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• P is the set of poses given by: P = {Pv}v∈V , where Pv = qv ∈ Rn.

• T is the set of dynamic transitions: T = {Te}e∈E , where Te = Φe is the dynamic

transition between the poses qsource(e) and qtarget(e).

A pictorial representation of a meta-dynamical system for AMBER2 is shown in Fig. 10.1.

BHL

FF1

FF2

FF3

FHL1

FHL2

FTL

FHL3

S1

S2

Figure 10.1: Representation of a meta-dynamical system for bipedal robotic dancing. Each
vertex represents the pose, and the edges represent the transitions from one pose to another.
This is an example of a nonperiodic hybrid system.

Creating dynamic transitions. Suppose we want to construct a meta-dynamical system.

Assume we are given a directed graph G with the set of poses P . Using the constructions

given in 6.1.2, we can construct a set of dynamic transitions T . Given that the desired

outputs yd are obtained through canonical walking functions as described in (6.23) and

(6.25), we propose the following optimization problem for creating a dynamic transition
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Te for a particular edge e ∈ E :

(v∗hip, α
∗) = argmin

(vhip,α)∈Rd
CostD(vhip, α, v

r
hip, α

r) (10.2)

s.t.

 yde(0, α)

yde(τmax, α)

 =

ya(q0)

ya(qf )

 , (CZD)

where vrhip, α
r are the reference parameters, yde denotes whether the desired trajectories

designed for each edge, and τmax is the time at the end of the step that is computed in the

following manner:

τmax = (Cvqf − Cvq0)/vhip, (10.3)

with vhip being the hip velocity, as introduced in (6.15). The cost of dancing (or objective

function), CostD, is the least squares error relative to reference data:

CostD =
∑
i

[yd(t[i], α)− yd(t[i], αr)]T [yd(t[i], α)− yd(t[i], αr)], (10.4)

where the reference used is either obtained from human data that have discrete heel toe

behavior, or obtained from the formerly established walking gaits that were provably stable

and experimentally realized on robots (see [79],[69]). Note that in some of the transitions

for dancing where there were no reference trajectories, a zero cost will be used. The defin-

ing aspect of this paper is using the constraints (CZD), which realizes configuration zero

dynamics, and is thus instrumental in being able to compose different motion primitives

to form a meta-dynamical system. This follows from the fact that the end result of the

optimization is a dynamic transition.

Example: Dynamic leg swing. To illustrate meta-dynamical systems, we will examine a

simple example consisting of two poses: back heel lift (BHL) and swing (S) (see Fig. 10.2).

In particular, we pick a specific example of transition from pose PBHL to PS2, i.e., from
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BHL S2

Figure 10.2: Figures showing the initial pose (left) and the final pose (right) for crouch
respectively. The red arrows are the edges.

back heel lift to swing. The two poses with the transition is depicted separately in Fig. 10.2.

We can accordingly define the meta-dynamical system in the following manner:

Discrete structure and poses. The graph is given by:

G = (V ,E ), V = {S,BHL}, E = {S→ BHL,BHL→ S}. (10.5)

The set of poses is given by: P = {Pv : v ∈ V }. The set of transitions is given by:

T = {Te : e ∈ E }. The edges are depicted by the arrows shown in Fig. 10.2. Note

that the above example can have more than 2 edges depending on the how the transitions

between poses are obtained. We will now introduce the optimization problem that realizes

the dynamic transitions, Te, from one pose to the other.

Dynamic transitions.

The cost for the optimization was evaluated by obtaining the least squares fit with the

multi-domain walking trajectory obtained on AMBER2 as found in [69]. The time param-

eter was picked such that only the swing portion of [69] was chosen for the cost. In other

words, the value τ was constrained in the optimization to match the reference trajectories.

Additional constraints, such as sufficient foot clearances on ground, were imposed through-

out the step. The knee angle was also constrained to be within a certain limit to ensure low
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Figure 10.3: Tiles of a leg swing behavior consisting of a transition from back heel lift to
swing pose. The top tiles illustrate the behavior of the robot achieved in simulation, and
the bottom tiles show the same behavior realized experimentally on AMBER2.

torque is utilized. That is, the final optimization (with physical constraints) is given by:

(ν∗hip, α
∗) = argmin

(vhip,α)∈R36

CostD(vhip, α, v
r
hip, α

r) (10.6)

s.t. (CZD)

τmax < 0.4

min(hnst) > 0

min(qnsk) > 0,

where the resulting optimal solution yields the parameters for the desired trajectories rep-

resented through the outputs. When this is applied on the robot through trajectory recon-

struction (10.12), the swing of the non-stance leg is observed. This was tested in AMBER2,

both in simulation and experiment, with tiles of the resulting behavior shown in Fig. 10.3.

10.2 Single and Double Support Controllers

For reducing the number of controllers, there are two types of phases that will be analyzed

in the paper, single support ss (when one foot is on ground) and double support ds (when
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both the feet are always on ground). Therefore, the transitions from one pose to another

are designed such that only type of controller is utilized. Based on Fig. 10.1, it can be ob-

served that each edge (transition) is either a double support or a single support phase. This

drastically reduces the number of controllers used, since, in this scenario, each transition

occurs in only one domain. It can be represented mathematically as

ϕv(t;x0) ∈ Dv, t ∈ [0, tf ], v ∈ V. (10.7)

Note that the set of vertices V for the hybrid system,HC, is different from the set of vertices

V for the meta-dynamical system, MD. Other phases like underactuations where only the

stance toe is on the ground are more complex to analyze and are therefore excluded from

this study. Depending on the contact conditions being enforced, we get control systems

associated with the single support and double support phases, denoted by (fss, gss) and

(fds, gds), respectively (see [69]).

Single Support. In the single support phase, the foot angle ψ0 = 0, and the non-stance foot

is always above ground. Picking only the base coordinates qb, k = 5 desired outputs, ydss :

R6 → R5, and and also actual outputs, yass : R6 → R5 are chosen (see (6.23)). The desired

outputs, ydss : R≥0 × R6 → R5 are functions of q, τ and αss = [αsk, αnsk, αhip, αtor, αnsf ]
T .

For the phase τ , instead of using (6.15), we use the time modulation

τ(t, vhip) = αscale(t− t0)/vhip, (10.8)

t0 is the time at the beginning of every transition. αscale = 1, but can be used to stretch the

modulation during a dance sequence, i.e., to match with the beat. It was shown in Chapter

9 that time based modulation still guarantee stability properties for DURUS, DURUS2D

(by virtue of ISS). Therefore, the desired trajectories are a function of (vhip, αss) ∈ R36. It

is also important to note that the actual output vector yass is a linear function of the angles:

yass = Hssq, with Hss ∈ R5×6 being the transformation matrix. Since, ψ0 = 0, q = [0, qTb ]T
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for single support phase.

The objective of the controller is to drive the outputs yss = yass − ydss to zero, i.e.,

yss → 0. This can be achieved by using a simple controller, e.g. PD controller, which does

not guarantee convergence to zero, but will ensure convergence to an ultimate bound (as

indicated by the ISS properties 7.1). Firstly, we study the hip position from (6.24) for the

following 1

δphip = −(Lc + Lt)(qsa + qsk)− Ltqsk = Cssqb, ψ0 = 0, (10.9)

where Css ∈ R1×6 is the row vector of constants. Note that δphip derived here is the same

as (6.24) with ψ0 omitted. If the controller used is expected to achieve zero tracking error,

i.e., yass− ydss = 0, then the desired joint angles q̇dss ∈ R6 and velocities qdss ∈ R6 of the robot

for the single support phase that realize this equality can be obtained as

yass = ydss =⇒

 Css

Hss

 qdss =

δphip

ydss

 . (10.10)

Therefore, the desired angle configuration and the angular velocities are

qdss =

Css

Hss


−1 δphip

ydss

 , q̇dss =

Css

Hss


−1  1

∂ydss
∂τ

 αscale

vhip

. (10.11)

The PD controller can thus be defined as

updss = −Kp
ss(qb − qdss)−Kd

ss(q̇b − q̇dss), (10.12)

where Kp
ss, K

d
ss are the proportional and derivative gains respectively.

Double Support. The double support phase adds extra constraints to the robot such as

1Note that the motivation for this coordinate is given by partial zero dynamics as studied in Chapter 5.
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friction, pinning conditions (holonomic constraints [72]) and normal forces, which will

constrain the dynamics of the robot. The actual and desired outputs for the robot are defined

in (6.25). In the double support phase, the stance ankle angle qsa is added in (6.25), where

yads : R7 → R6, ydds : R7 → R6, αds = [αsa, α
T
ss]
T , with αds ∈ R43. The actual outputs

can also be written as yads = Hdsq, with Hds ∈ R6×7. Since the objective of the controller

during the double support phase is to achieve dynamic behaviors in the robot to realize a

dancing sequence, the convergence of the outputs to zero is ignored. Similar to (10.9), the

following coordinate is defined

δphip = −(Lc + Lt)(ψ0 + qsk + qsa)− Ltqsk = Cdsq, (10.13)

where Cds ∈ R1×7 is the row vector of constant terms. Having obtained the expression for

δphip, the desired joint angles and velocities can be defined as

qdds =

Cds

Hds


−1 δphip

ydds

 , q̇dss =

Cds

Hds


−1  1

∂ydss
∂τ

 αscale

vhip

. (10.14)

With Kp
ds, K

d
ds as the proportional and derivative matrices, the PD controller is

updds = −Kp
ds(q − q

d
ds)−Kd

ds(q̇ − q̇dds). (10.15)

Note that, both these matrices are not square since updds ∈ R6. In fact, the first row and

column of the gain matrices are zeros.

10.3 Configuration Zero Dynamics

For the single support phase, with the feedback linearizing controller (see [118]) being

applied, the outputs yss are exponentially driven to zero. The closed loop system fcl, after
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substituting for updss in (6.22), will exhibit zero dynamics.

Zss = {(q, q) : yss(qb) = 0, Lfyss(qb, q̇b) = 0, ψ0 = 0, ψ̇0 = 0}. (10.16)

This restriction of the dynamics to a surface enables us to connect different motion primi-

tives of the single support phase in such a way that the transition between domains occurs

without change of yss
2. In other words, the transition will be smooth. Motivated by the de-

sire to relax the derivative condition in (10.16), we introduce the notion of configuration

zero dynamics defined to be

CZss = {(q, q̇) : yss(qb) = 0, ψ0 = 0}. (10.17)

For the double support phase, due to geometric constraints, it is not possible to realize

zero dynamics. But, it is possible to connect a motion primitive with the single support

phase due to the choice of controller. The concept of configuration zero dynamics plays

an important role in the context of dancing, since when switching between a large col-

lection of surfaces, if the configuration zero dynamics constraints are ensured, this allows

for a transition without a sudden change in desired angles. Of course, if the zero dynamic

constraints are ensured, then it allows for even smoother transitions (jerk free) from one de-

sired trajectory to another. This will be utilized in the next section through the composition

of configuration zero dynamic surfaces to allow for minimum jerk transitions between do-

mains. In addition, this constraint will be independent of the speed, in which the transition

is executed.
2Note: The construction of the PD controller defined in (10.9) through (10.12) is based on the notion that

the desired angles and velocities: (qdss, q̇
d
ss) ∈ Zss.
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10.4 Dynamic Robotic Dancing on AMBER2

This section presents the process of realizing dynamic dancing in AMBER2 by using the

methods introduced in this chaper. We will not include the domains such as UA, DHL,

FTBH from Fig. 4.3 since they require higher torque and are relatively difficult to realize

in the robot. Therefore, we will use the remaining five generic cases of the feet behavior

for generating the pose. We will use three types of front heel lift: FHL1, FHL2, FHL3,

one front toe lift: FTL, three types of flat-footed poses: FF1, FF2, FF3, two types of

swing poses: S1,S2, and finally one back heel lift pose: BHL. All ten poses are shown in

Fig. 10.1. The end result is an oriented graph G = (V ,E ), where

V = {FHL1,FHL2,FHL3,FTL,FF1,FF2,FF3, S1, S2,BHL}, (10.18)

and E is the set of red arrows in Fig. 10.1.

For generating the dynamic transition between poses, the optimization (10.2) was ac-

cordingly solved. Since it was not necessary to optimize trajectories to transition from

every pose to every other pose, we used 20 edges (or optimized dynamic transitions) that

satisfied configuration zero dynamic (CZD) constraints. Therefore, we use the set of

edges as shown in Fig. 10.1, with the resulting dynamic transition T = {Te : e ∈ E },

obtained through the optimization in (10.2). Note, additional constraints were also im-

plemented in the optimization to realize different behaviors varying from constraining the

angles, to allowing sufficient foot clearance, to constraining the velocities, to constraining

final parameterized time: τmax.

Synchronizing with music. The particular method employed to synchronize the behaviors

of the robot with the music is to utilize the parameterization of time (10.8). The scaling in τ

via αscale causes a corresponding change in desired trajectories of the robot (as represented

by the outputs parameterized by τ ) resulting in synchronization between the beats of the

music and the dynamic transitions. Dynamic programming methods as described in [119]
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S2

Figure 10.4: Pictorial representation of the results obtained after the implementation of
transitions and music synchronization for AMBER2 dancing.

are used to generate music tempo speed for a given song.

10.5 Results

Implementing the transitions in the robot resulted in dynamically stable dancing accurately

synchronized with the tempo of the music. Fig. 10.5 shows the comparison between de-

sired and joint angle trajectories, Fig. 10.4 shows the configuration of the robot at different

instances of time during the dance sequence. The video of AMBER2 dancing is shown in

[7].

200



0 5 10 15
−0.6

−0.4

−0.2

0

0.2

0.4

Time(s)

A
n
g
le

(r
a
d
)

 

 

θasa

 

 

θdsa

0 5 10 15

0.4

0.6

0.8

1

1.2

Time(s)

A
n
g
le

(r
a
d
)

 

 

θask

 

 

θdsk

0 5 10 15
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Time(s)

A
n
g
le

(r
a
d
)

 

 

θash

 

 

θdsh

0 5 10 15

−0.8

−0.6

−0.4

−0.2

0

0.2

Time(s)

A
n
g
le

(r
a
d
)

 

 

θansh

 

 

θdnsh

0 5 10 15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(s)

A
n
g
le

(r
a
d
)

 

 

θansk

 

 

θdnsk

0 5 10 15

−0.8

−0.6

−0.4

−0.2

0

Time(s)

A
n
g
le

(r
a
d
)

 

 

θansa

 

 

θdnsa

Figure 10.5: Experimental data comparing the actual and desired angles for a sequence of
steps extracted from a part of the dance sequence as realized on AMBER2. The vertical
dashed lines indicate end points of the transitions.
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CONCLUSIONS AND FUTURE WORK

In this work, it was shown how to obtain a class of input to state stabilizing control Lya-

punov functions for hybrid systems, given the set of control Lyapunov functions. It was

shown in the specific case of the bipedal robots by picking a class of control Lyapunov

functions, called the rapidly exponentially stabilizing control Lyapunov functions (RES-

CLF). With this construction, we obtained the class of input to state stabilizing controllers

that adds robustness to a wide variety of uncertainties. Stabilizing controllers do not al-

ways promise stability under uncertainties. The methodology shown in this thesis can be

used to realize input to state stabilizing control Lyapunov functions on the fly without any

extra analytical effort. Specifically, this was demonstrated for a special class of hybrid sys-

tems: systems with impulses. Two kinds of uncertainties were studied in detail: parameter

uncertainty and phase based uncertainty, which typically affect bipedal robots.

For parameter uncertainty, the concept of a path dependent measure for evaluating the

parameter uncertainty of hybrid systems models of robots was introduced. The main for-

mulation of the proposed work was parameter to state stability that quantifies the affect

of parameter uncertainty on the performance of the system. Utilizing this notion, coupled

with RES-CLFs, we are able to establish the main results: conditions on parameter to state

stability of both continuous and discrete events. Concretely, these results were applied to

the case when the there is a stable periodic orbit in the zero dynamics, therein implying a

stable periodic orbit in the full order dynamics even in the case of parameter uncertainty.

This was then verified by realizing a stable walking gait on AMBER having a parameter

error of 30%. It is important to observe that while the parameter uncertainty measure yields

the difference between the actual and the predicted torque applied on the robot, the impact

measure yields the impulsive ground reaction forces acting upon the robot during an im-

pact. Therefore, this can be used as an effective tool to not only design the robot model
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more effectively, but also to design the nominal trajectories for the robots that takes the

least path of the measure.

For phase based uncertainty, we studied the problem of time dependent CLFs, specif-

ically, those functions that focus on tracking a set of time dependent periodic trajectories.

The desired trajectories, typically rendered functions of a phase variable τ , are modulated

by variation of time from 0 to the time period T . One of the applications of these trajecto-

ries is in generating periodic orbits in hybrid systems, especially in the context of bipedal

walking. A comparison was made between the time based and state based control laws

and it was formally shown that time dependent CLFs can realize state based tracking with

acceptable errors as long as the parameterized time closely matches with the state based

phase variable. This was then successfully shown experimentally in two robots DURUS

humanoid and DURUS-2D.

Other forms of uncertainties were also studied like unmodeled dynamics, Coriolis and

centrifugal effects, gravity effects and also friction based effects. The treatment was not in-

depth, but are a natural extension of parameter/phase based uncertainties studied in Chap-

ters 8, 9. It is important to note that the methods developed are applicable to even aperiodic

systems; realization of dynamically stable dancing was described in Chapter 10.

Future Work. The merger of control Lyapunov functions and the criterion of input to state

stability is just the beginning, and the future work can take numerous directions. The first

direction being especially in the area of systems that are not necessarily affine. Several

practical systems are non-affine in nature and require an in-depth study. Second direction

is in the study of variants of input to state stability such as integral input to state stability, in-

put/output to state stability. The dual of ISS, called the output to state detectability/stability

can be widely used for the purposes of optimal state estimation. In other words, we can

use these methods to develop dynamic programming approaches to realize optimal estima-

tors that are output to state detectable. Another possible direction is in the construction of

ISS versions for robustly stabilizing controllers. For example, adaptive control techniques
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can be used in robotic systems to overcome parameter uncertainty. With this stabilizing

controller, we can now construct ISS variants that handle other forms of uncertainty.

Given the practical limitations, the goal is to always think of ways to modify a controller

such that the resulting closed loop system achieves the desired objective. We could design

specifications that yield better performances, we could get a better estimate of the model

and the states, or, we could design controllers that are robust to larger disturbances. The

theory of input to state stability definitely has its strengths and its weaknesses, and we

should find ways to get the best of out the available resources.
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