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Abstract

Bipedal robots are prime examples of complex cyber-physical systems (CPS). They exhibit many of
the features that make the design and verification of CPS so difficult: hybrid dynamics, large continuous
dynamics in each mode (e.g., 10 or more state variables), and nontrivial specifications involving nonlinear
constraints on the state variables. In this paper, we propose a two-step approach to formally synthesize
controllers for bipedal robots so as to enforce specifications by design and thereby generate physically
realizable stable walking. In the first step, we design outputs and classical controllers driving these
outputs to zero. The resulting controlled system evolves on a lower dimensional manifold and is described
by the hybrid zero dynamics governing the remaining degrees of freedom. In the second step, we construct
an abstraction of the hybrid zero dynamics that is used to synthesize a controller enforcing the desired
specifications to be satisfied on the full order model. Our two step approach is a systematic way to
mitigate the curse of dimensionality that hampers the applicability of formal synthesis techniques to
complex CPS. Our results are illustrated with simulations showing how the synthesized controller enforces
all the desired specifications and offers improved performance with respect to a classical controller. The
practical relevance of the results is illustrated experimentally on the bipedal robot AMBER 3.
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1. Introduction

Legged robots are complex dynamic cyber-physical system (CPS). As a concrete example, consider
MABEL shown in Fig. 1. This bipedal robot possesses nonlinear, non-order preserving, non-convex
dynamics described by a hybrid model with 14 state variables and four actuators [26]. To enable MABEL
to accept a set of high-level locomotion commands over a network, and successfully execute the commands
while responding automatically and safely to uncertainty in the assumed profile of the environment, the
finite state machine shown in Fig. 1 was designed [25]. It allowed MABEL to compose on the fly a set
of low-level control algorithms executing a handful of motion primitives. A team of graduate students
hand-tuned the transition conditions among the various nodes of the state machine. Each time a small
change was made in one of the software or hardware components, such as adjusting a transition condition
or adding a sensor, the entire state machine had to be completely retested, leading often to the redesign
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Figure 1: The planar (2D) biped MABEL was developed for the study of dynamic locomotion. High-level motion primitives
were used on MABEL to allow walking over rough ground without tripping. While tools for automatic low-level control
algorithm synthesis are well developed, at the state machine level, all tuning was done by hand for lack of appropriate tools.
“Probable correctness” was established through extensive simulation and experiments.

of other software components. There is a pressing need to understand this, and more general CPSs, in
a way that allows for the automatic synthesis of embedded control software that is provably correct by
construction.

In this paper, we begin to lay the groundwork for this correct-by-construction control software design
process in the context of dynamic systems. In particular, the specific bipedal robot that will be studied is
AMBER 3 as shown in Fig. 2. We consider a walking gait with the simplest discrete structure, resulting in
a single-mode hybrid model with 12 state variables and 6 actuators. While we seek formal guarantees on
the behavior of the 12-dimensional closed-loop system, we do not propose to perform formal synthesis on a
model this large. Similarly to the work in [8, 9], we focus on the regulation of a subset of system states and
use advanced nonlinear control methods to transform the complex dynamics to a simpler, more tractable
system which is amenable to the correct-by-construction synthesis techniques. In contrast to [8, 9], where
the authors exploit differential flatness to reduce the nonlinear synthesis problem to a controller design
problem for a chain of integrators, our method applies to the aforementioned hybrid system with non-
flat outputs. Specifically, in our approach the chain of integrators is forced to be at equilibrium and we
apply the symbolic abstraction techniques to a hybrid system that lives on an attractive, hybrid-invariant,
low-dimensional manifold which is “complementary” to the state space of the integrators [2, 35]. The
low-dimensional hybrid subsystem is called the Hybrid Zero Dynamics (HZD), and its solutions can be
used to reconstruct the solutions of the high-dimensional hybrid system. The end result is the ability to
guarantee specifications on the full-order high-dimensional system via the reduced order representation
encoded by the HZD.

There is a growing interest in the synthesis of correct-by-construction controllers for robotic applica-
tions as evidenced by the growing body of work on this topic [32, 10, 19, 11]. Although the techniques
we employ for synthesis are based on the symbolic abstraction techniques described in [31], what sets the
results in this paper apart from prior work is the complexity of the system being controlled. In particu-
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Figure 2: Bipedal walking robot AMBER 3.

lar, as previously mentioned, the hybrid model for AMBER 3 requires 12 state variables, which is larger
than any system previously reported in the literature for which correct-by-construction control has been
synthesized. The key to scaling the symbolic controller synthesis techniques to this level of complexity
is the new design flow based on the HZD. This is the main contribution of the paper as we believe that
its applicability transcends the specific formal synthesis technique we employ and the robotics domain in
which we develop the result.

The results in this paper are based on previous work by the authors on two lines of research that
have been independently pursued in the past: 1) control of bipedal robots via hybrid zero dynamics and
2) synthesis of controllers via finite-state abstractions. In order to combine techniques from these two
different areas several new results, formalized in Theorems 1 through 4, had to be proved. Theorems 1
and 2 are new because they represent a notion of physically realizable walking that had not been treated
previously in the context of hybrid zero dynamics; specifically, previous work focused on asymptotic
stability of periodic trajectories lying in the zero dynamics manifold, while for the present work, a more
general notion of aperiodic upright walking gaits is required. Theorem 3 is new since prior work by the
authors on the construction of abstractions for hybrid systems considered only switched systems. The
hybrid model considered in this paper, as presented in Sect. 2, is not a switched system since it is equipped
with a nontrivial guard and reset map

This paper is an extension of the conference paper [5]. In addition to new simulation results, this
paper features the first experimental implementation of the proposed methodology of combining HZD with
formal methods. Initial results indicate that the controller based on formal methods enforces constraints
better than a controller based only on regulating system outputs. The platform we consider in this paper,
AMBER 3, is a successor to AMBER 2 [21, 38], the platform modeled in [5]. AMBER 3 is approximately
40 % larger than AMBER 2 and its size more closely approximates an adult human. The inclusion of
a full-size torso also enables better balancing while walking. Finally, the motors used on AMBER 3 are
approximately ten times more powerful than the ones used on AMBER 2

The remainder of the paper is organized as follows: We begin by introducing hybrid systems in
Sect. 2, with a special focus on the hybrid model of walking robots with a single domain. In addition,
we introduce the notion of a stable walking gait (without requiring periodicity), and give conditions that
ensure that these walking gaits are physically realizable. In Sect. 3, we introduce a means for dimension
reduction through the use of a pre-feedback controller that renders a low-dimensional surface hybrid
invariant yielding HZD. Importantly, for this initial result, the controller also results in linear dynamics
on the hybrid zero dynamics surface and, ultimately, a hybrid system with two-dimensional continuous
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linear dynamics. We establish the first theoretic results of the paper in Sect. 3, wherein it is shown that
solutions of the HZD lift to solutions of the full-order hybrid system and that the HZD manifold is stable
as a set. Section 4 introduces the main results of the paper: a means for formally constructing controllers
via the HZD to yield provably stable walking gaits that satisfy physical realizability constraints. The
paper concludes with Sect. 5, where simulation results and experiments on AMBER 3 using correct-by-
construction control are presented.

2. Bipedal Robot Models, Walking Gaits and Physical Constraints

In this section, we present a formalism for hybrid systems that is sufficient for modeling bipedal walking
robots. After the introduction of these models, we present a definition of a walking gait for a bipedal
robot along with associated physical realizability constraints. This will set the stage for formal controller
synthesis for bipedal robots.

Hybrid Systems & Executions. We begin by introducing hybrid (control) systems (also referred to as
systems with impulse effects [13, 14]). We consider hybrid systems with one domain because the specific
biped models considered in this paper applies to flat-footed walking; for more complex foot behavior, more
elaborate hybrid systems must be considered [6, 12, 14, 15, 20, 38].

A hybrid control system is a tuple,

H C = (D, U, S,∆, f, g), (1)

where D is the domain with D ⊆ Rn a smooth submanifold of the state space Rn, U ⊆ Rm is the set of
admissible controls, S ⊂ D is a proper subset of D called the guard or switching surface, ∆ : S → D is a
smooth map called the reset map, and (f, g) is a control system on D, i.e., in coordinates: ẋ = f(x)+g(x)u
with u ∈ U . A hybrid system is a hybrid control system with U = {0}; a particular example would include
a closed-loop hybrid system, meaning that a feedback controller has been applied, defining the inputs as
functions of the state. In this case,

H = (D, S,∆, f),

where f is a dynamical system on D ⊆ Rn, i.e., ẋ = f(x).
For the sake of simplicity, and without loss of generality for the formal results presented, we will

consider infinite solutions (or hybrid flows or executions) of a hybrid system H . Motivated by existing
definitions [20, 35, 12, 18], we define a solution to a hybrid system H by the tuple:

χH = (I, C),

where I = {Ii}i∈N is a hybrid interval where Ii = [τi, τi+1] with τi, τi+1 ∈ R and τi ≤ τi+1, and C = {ci}i∈N
is a collection of solutions to f , i.e., ċi(t) = f(ci(t)) for all t ∈ Ii. In addition, we require the following
conditions to hold:

(i) ci(t) ∈ D for all t ∈ Ii, i ∈ N,

(ii) τi+1 = inf{t ≥ τi : ci(t) ∈ S},
(iii) ∆(ci(τi+1)) = ci+1(τi+1).

The initial condition for a hybrid flow is x0 = c0(τ0). When we wish to make explicit the initial condition
of χH we will write χH (x0).

Robotic Hybrid System Models. Utilizing the formulation of hybrid systems, we will now construct
hybrid system models for bipedal robots. Specifically, we will consider a hybrid control system of the
form:

H CR = (DR, UR, SR,∆R, fR, gR). (2)
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The constructions of this section will be presented in the general case of a robot with a single discrete
phase of walking, i.e., they will not be specific to the robot—AMBER 3—that will be considered in this
paper. As a result they are applicable to both 2D and 3D robots in the case of full actuation, including
humanoid robots. It is important to note that the constructions considered in this paper do not apply
to robots with underactuation (since, in this case, there will not be actuation in the zero dynamics), yet
future work will be devoted to considering this case as well.

Continuous Dynamics: Let QR be the configuration space of a robot with n degrees of freedom, i.e.,
n = dim(QR), with coordinates θ ∈ QR. For the sake of definiteness, it may be necessary to choose QR to
be a subset of the actual configuration space of the robot so that global coordinates can be defined, i.e.,
such that QR is embeddable in Rn, or more simply QR ⊂ Rn. Calculating the mass and inertia properties
of each link of the robot, coupled with the Euler-Lagrange equations [23, 29], yields the affine control
systems (fR, gR):

fR(θ, θ̇)=

[
θ̇

−D−1(θ)C(θ, θ̇)

]
, gR(θ)=

[
0

D−1(θ)B

]
, (3)

where D is the mass-inertia matrix, C contains the Coriolis/centrifugal effects and gravitational terms,
and B ∈ Rn×n is the actuation matrix and assumed to be nonsingular, i.e., there is one independent
actuator for each degree of freedom. Such robot models are said to be fully actuated. Finally, since we
are assuming full-actuation, the set of admissible values is given by UR ⊆ Rn.

Domain and Guard: The domain specifies the allowable configuration of the system as specified by a
unilateral constraint function h; for the bipeds considered in this paper, this function specifies that the
non-stance foot must be above the ground, i.e., h is the height of the non-stance foot and the system is
subject to the unilateral constraint h ≥ 0. Therefore, the domain DR is given by:

DR =
{

(θ, θ̇) ∈ TQR : h(θ) ≥ 0
}
, (4)

where TQR is the tangent bundle of QR. The guard is just the boundary of the domain with the additional
assumption that the unilateral constraint is decreasing:

SR =
{

(θ, θ̇) ∈ TQR : h(θ) = 0 and dh(θ)θ̇ < 0
}
, (5)

where dh(θ) is the Jacobian of h at θ.

Discrete Dynamics. The discrete dynamics of the robot determine how the velocities of the robot
change when the foot impacts the ground, while simultaneously swapping the roles of the “stance” and
“non-stance” legs. In particular, the reset map ∆R is given by:

∆R : SR → DR, ∆R(θ, θ̇) =

[
∆θθ

∆θ̇(θ)θ̇

]
, (6)

where ∆θ is the relabeling of the configuration variable associated with the stance and non-stance leg at
impact. Here, ∆θ̇ determines the change in velocity due to impact (see [16, 14] for a detailed discussion).

Example 1. The model for the bipedal robot AMBER 3 considered in this paper is a special case of (2),
with the parameters, e.g., masses, lengths and inertias, determined from a high-fidelity SolidWorks model
(see Table 1). In particular, AMBER 3 is a 2D 7-link bipedal robot with feet (additional details regarding
the development of the model can be found in Section 5). For this initial study, a simplified flat-footed
gait will be assumed, resulting in a 6 degree of freedom 12-state model. The coordinates of QR ⊂ R6 are
denoted by θ = (θsa, θsk, θsh, θnsh, θnsk, θnsa)T where, as illustrated in Fig. 3b, θsa is the angle of the
stance ankle, θsk is the angle of the stance knee, θsh is the angle of the torso with the stance thigh, θnsh is
the angle of the non-stance thigh with the torso, and θnsk is the angle of the non-stance (or swing) knee,
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(a) Sideview of bipedal robot
AMBER 3.

(b) Joint angles. (c) Outputs.

Figure 3: The bipedal robot AMBER 3 (a), the joint angles (b) and outputs (c).

Model Parameters
Part Mass Length Inertia x-axis Inertia z-axis

(kg) (mm) (kgmm2) (kgmm2)
Calf 3.865 406.4 29032.44 3199.56

Thigh 3.865 406.4 29032.44 3199.56
Torso 10.418 251.11 188576.35 59483.66
Foot 1.151 152.4 1541.04 8498.06

Table 1: Hardware parameters for AMBER 3.

and θnsa is the angle of the non-stance ankle (or foot). Since AMBER 3 is fully actuated, based upon this
choice of coordinates B = I6 ∈ R6×6. Note that we will take UR = R6 for AMBER 3, and impose physical
constraints that will restrict the admissible inputs to a subset of UR as will be discussed at the end of this
section.

Walking Gaits. Before discussing the design specifications to be met through formal methods, it is first
necessary to single out a class of desired solutions to be realized on the hybrid system H CR. In previous
work of the authors, the focus was on asymptotically stable periodic walking motions [35, 4, 2], and
solutions constructed through the composition of periodic motions. One reason that previous work was
limited to periodic solutions was that classical nonlinear design tools are well adapted for characterizing
various kinds of stable equilibrium points or periodic orbits of a closed-loop system, but are less well suited
for characterizing classes of bounded trajectories with less structure that may also correspond to walking
gaits. One of the take-home messages of this paper is that the marriage of classical nonlinear control
techniques and formal methods is able to treat a larger class of trajectories.

Suppose now that a feedback controller u(θ, θ̇) is applied to (2) with the end result being a hybrid
system HR. Let χHR(θ0, θ̇0) be a solution to this system with initial condition (θ0, θ̇0) and ci(t) =
(θi(t), θ̇i(t)). In addition, let pxcom(θ) be the horizontal position of the center of mass of the robot,
ṗxcom(θ, θ̇) the velocity of the forward position of the center of mass, and pycom(θ) be the vertical position

6



of the center of mass. Then we formalize the following notion of a walking gait for a bipedal robot.2

Definition 1. A solution χHR(θ−, θ̇−) to HR is a walking gait if (θ−, θ̇−) ∈ SR and there exist3

constants τmin > 0 and pmin
com > 0 such that

τi+1 − τi > τmin (Dwell Time)

ṗxcom(θi(τi+1), θ̇i(τi+1)) > 0 (Progress)

min
t∈Ii

pycom(θi(t)) > pmin
com (Upright)

for all i ∈ N. A walking gait is stable if for all γ > 0 there exists a δ > 0 such that all solutions
χHR(θ0, θ̇0) with (θ0, θ̇0) ∈ Bδ(θ−, θ̇−) ∩ SR satisfy:

(θi(τi+1), θ̇i(τi+1)) ∈ Bγ(θ−, θ̇−) ∩ SR (Stable)

and are walking gaits.

The conditions singled out in Def. 1 are not universal prescriptions for walking. Rather, as mentioned
previously, they are used to single out desirable features in a walking gait without restricting ourselves to
periodic locomotion. In this case, the conditions ensure that there are no instantaneous transitions (e.g.,
no Zeno behavior [18]), guarantee that the center of mass makes forward progress via a velocity condition,
and ensure that the robot is sufficiently upright (as defined by the user through pmin

com). Finally, note that
due to the fact that we are only considering infinite solutions, inherent in this definition is the notion that
the walking gait is indefinite.

Physical Specifications. The following physical specifications are required of a walking gait χHR :

Torque Bounds: From the definition of a hybrid control system, any input belonging to UR is allowed, yet
we explicitly indicate the performance limitations of actuators through an additional physical constraint
on a walking gait given by:

sup
t∈Ii, i∈N

‖u(θi(t), θ̇i(t))‖∞ < umax, (C1)

where u is the control law that generated the gait and umax is the maximum joint torque achievable by
all of the actuators (this is assumed to be a uniform number for the sake of simplicity).

Velocity Bounds: As with torque bounds, we require that the maximum joint velocity stays under a
maximum value, θ̇max, as specified by the actuators. In particular:

sup
t∈Ii, i∈N

‖θ̇i(t)‖∞ < θ̇max. (C2)

ZMP Constraints4: We require that the feet remain flat during a walking gait, which results in zero
moment point (ZMP) type constraints [33, 14]. If ηst(θ) is the position and orientation of the stance foot
with respect to a fixed inertial frame, then ZMP conditions are determined by viewing ηst as a holonomic
constraint. In particular, if Jηst is the jacobian of ηst, then the forces and moments at the stance foot are
given by:

Fst(θ, θ̇, u) = (7)

(Jηst(θ)D(θ)−1Jηst(θ)
T )−1(Jηst(θ)D(θ)−1(C(θ, θ̇)−Bu)− J̇ηst(θ, θ̇)θ̇),

2We define a ball of radius δ > 0 around a point x by Bδ(x) = {y ∈ DR : ‖x− y‖ < δ}.
3These constants are defined by the user based upon the desired behavior of the walking gait.
4Note that we could also consider friction conditions in a similar fashion but will omit doing so for brevity.
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(a) Graphical illustration of the definition of walking.

Introduction Hybrid Models and Robotic Walking Reduction via Nonlinear Control Formal Controller Synthesis Conclusion

Specifications and Physically Realizable Walking

Definition
A walking gait χHR is physically realizable if it satisfies the
following constraints:

Maximum Torque:

sup
t∈Ii, i∈N

‖u(θi(t), θ̇i(t))‖∞ < umax,

Maximum Velocity:

sup
t∈Ii, i∈N

‖θ̇i(t)‖∞ < θ̇max

Moment Bounds (ZMP):

sup
t∈Ii, i∈N

AZMPFst(θi(t), θ̇i(t), u(θi(t), θ̇i(t))) < 0

Formal Synthesis for Bipedal Robots (b) Physical constraints on the
robot.

Figure 4: Graphical illustration of both the elements that define walking (a) and the physical constraints on the robot (b).

where Fst ∈ R3 for 2D walking robots and Fst ∈ R6 for 3D walking robots. Conditions so that the foot
does not roll during walking can be expressed through inequality constraints of the form:

sup
t∈Ii, i∈N

AZMPFst(θi(t), θ̇i(t), u(θi(t), θ̇i(t))) < 0, (C3)

where AZMP ∈ R2×3 for 2D walking robots and AZMP ∈ R4×6 for 3D walking robots is a matrix that
depends on the physical parameters of the feet of the robot (in particular, the length and the width of the
foot [14]).

Foot Height Constraints: To achieve walking gaits on physical bipedal robots, it is important that the
swing foot does not “scuff” before the end of a step. We introduce, therefore, foot scuffing constraints.
Let h(θ) be the height (y position) of the non-stance (swing) foot, then we require that:

τi+1 = inf{t > τi : h(θi(t)) = 0}. (C4)

Note that this condition prevents the case when the foot “scuffs” the ground (h(θ) = 0) before reaching the
guard (where ḣ(θ, θ̇) < 0). As a result, this is a stronger condition that the one imposed on solutions (and,
specifically, (ii)). We also note that such a τi+1 must exist due to the dwell time condition in Definition 1.

Definition 2. A walking gait χHR is physically realizable if it satisfies constraints (C1)-(C4).

Example 2. For AMBER 3, based upon the specifications of its actuators coupled with appropriate factors
of safety, umax = 60Nm and θ̇max = 5 rad/s. For the ZMP constraints, Fst = (F fxst , F

fy
st , F

mz
st ) (see [14])

since AMBER 3 is a 2D robot, and the ZMP constraints are determined by:

AZMP =

[
0 −lh −1
0 −lt 1

]
,
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where lt and lh are the length to the toe from the ankle and heel from the ankle, respectively.

3. Dimension Reduction through Control

This section builds on an existing nonlinear feedback control method to reduce the dimension of the
robot model for which a correct-by-construction controller can be practically synthesized. The reduction
technique utilizes the notion of a virtual constraint [2, 14, 35]. In particular, we will consider relative
degree 2 outputs for which a classical nonlinear controller exists that drives these outputs to zero. Nulling
the outputs will restrict the full-order dynamics of the robot to a low-dimensional surface—termed the
partial zero dynamics—wherein the evolution of the system may be further dictated by relative degree 1
outputs. Through pre-feedback control laws, the dynamics of the relative degree 1 outputs defines a 2-
dimensional linear hybrid control system. Solutions of this reduced-order hybrid system will be proven to
yield solutions to the full-order dynamics. To accomplish this “lifting” of solutions from the reduced-order
system to the full-order model, two technical extensions to results in [2, 14, 35] are necessary to allow the
study of the aperiodic solutions identified in Def. 1 in a formally correct manner. These will be noted as
they are developed.

Virtual Constraints. Consider virtual constraints (or outputs) of the following form [2, 14]:

y1(θ, θ̇, v) = ya,1(θ, θ̇)− v, (8)

y2(θ, α) = ya,2(θ)− yd,2(ρ(θ), α), (9)

where y1 and y2 will be chosen so that they are relative degree 1 and (vector) relative degree 2, respectively.
In this case, ya,1(θ, θ̇) is the “actual” velocity-based output and v is the “desired” velocity. In the following,
we will view v as the control input to the system (after pre-feedback), and we synthesize v through formal
methods. Similarly, ya,2(θ) is the actual vector of outputs that modulate the posture of the robot and
yd,2(ρ(θ), α) gives the desired evolution of the associated configuration variables as dictated by parameters
α in the desired evolution of the virtual constraints and a parameterization of time ρ(θ).

For the sake of simplicity, we will assume that the virtual constraints have a linear structure, namely

ya,1(θ, θ̇) = cθ̇
ya,2(θ) = Hθ

s.t. rank

([
c
H

])
= n, (10)

and that ρ(θ) = cθ − cθ+, where θ+ is the configuration at the beginning of a step, and will be specified
later. The goal is to drive both the velocity and posture modulating outputs to zero, i.e., y1 → 0 and
y2 → 0.

Example 3. In the case of AMBER 3, the virtual constraints considered in this paper are illustrated in
Fig. 3c. In particular, as discussed in [21], ya,1 is the linearized velocity of the hip, v is the desired velocity
of the hip, ya,2 consists of a vector of configuration based functions and yd,2 is the time solution to a linear
mass-spring-damper system parameterized by the linearized position of the hip.

Pre-Feedback Control. To set the stage for obtaining the reduced order dynamics that will be used
to synthesize controllers for the system, we begin by applying a “pre-feedback” controller based upon
feedback linearization [28] (note that this controller is a slight modification of the controller presented in
[2, 3]). With the goal of driving y2 → 0 and shaping the dynamics of y1 to be that of a linear system with
control input v, consider the feedback controller:

u
(α,ε)
FB (θ, θ̇) = −A−1(θ, θ̇)

([
0

LfRLfRy2(θ)

]
(11)

+

[
LfRya,1(θ, θ̇)

2 1
εLfRy2(θ, θ̇, α)

]
+

[
1
εy1(θ, θ̇)
1
ε2 y2(θ, α)

])
,
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with control gain ε > 0 and decoupling matrix:

A(θ, θ̇) =

[
LgRya,1(θ, θ̇)

LgRLfRy2(θ, θ̇, α)

]
. (12)

Here L denotes the Lie derivative [28], and we assume that the decoupling matrix is invertible. It follows

that u
(α,ε)
FB (θ, θ̇) results in dynamics on the outputs given by:

ẏa,1 = −1

ε
y1 (13)

ÿ2 = −2
1

ε
ẏ2 −

1

ε2
y2 (14)

and therefore, for a control gain ε > 0, the control law u
(α,ε)
FA renders the outputs exponentially stable

[28]. That is, in the case when v is a constant (and hence ẏa,1 = ẏ1), the virtual constraints y1 → 0 and
y2 → 0 exponentially at a rate of 1

ε .

Partial Hybrid Zero Dynamics. While the introduced controller drives y1 → 0 and y2 → 0, we want
to be able to modulate the relative 1 degree output (through v), while forcing the relative 2 degree output
to remain zero and hence form an invariant surface. This motivates the introduction of the partial zero
dynamics surface [2]:

PZα = {(θ, θ̇) ∈ TQR : y2(θ, α) = 0, LfRy2(θ, θ̇, α) = 0}. (15)

We say that the hybrid system (2) has partial hybrid zero dynamics (PHZD)5 if:

∆R(SR ∩PZα) ⊂ PZα. (PHZD)

In particular, we can choose the parameters α so that this holds through an optimization of the form:

α∗ = argmin
α∈R5(n−1)

CostHD(α) (16)

s.t. ∆R(SR ∩PZα) ⊂ PZα. (17)

Note that the cost can be chosen based upon the specific objective of interest, i.e., minimizing the cost
of transport, and that this optimization can be stated only in terms of the parameters α through the
constructions introduced in [2].

The notion of PHZD allows for the construction of a hybrid system model for the reduced order
dynamics defined by the surface (15). In particular, we reformulate the constructions in [35] in a way
applicable to full-actuation [2]. Because of the specific form of ya,1 in (10) due to the linear output
assumption, we begin by picking the following coordinates for the partial zero dynamics surface:

z1 = cθ (18)

z2 = ya,1(θ, θ̇) = cθ̇

where c ∈ R1×n as introduced in (10). As a result of the fact that we have full actuation and have
completely linearized the dynamics with (11), the relative degree 1 output (8) evolves according to (13).
Therefore, the partial hybrid zero dynamics evolve according to the linear ODE:

ż1 = z2 (19)

ż2 = −1

ε
(z2 − v).

5This formulation is based upon the notion of hybrid zero dynamics for underactuated bipedal robots [36].
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where v ∈ R is viewed as a control input. The end result is, therefore, a linear control system:

ż = APZz +BPZv (20)

with APZ and BPZ obtained from (19).

Impact Configurations. It is important to note that the proper choice of parameters α that determine
the partial zero dynamics surface determine the configuration of the robot at impact (foot strike). In
particular, the configuration of the robot at impact, θ−, is determined by the following requirement:

θ− = θ s.t.

[
y2(θ, α)
h(θ)

]
=

[
0
0

]
. (21)

By virtue of the form of the relabeling matrix, ∆θ, it follows that if h(θ−) = 0 then h(θ+) = 0 for
θ+ = ∆θθ

−. Moreover, from the fact that y2(θ, α) ∈ Rn−1, for the proper choice of relative degree 2
outputs and parameters α, (21) has at least two solutions for θ ∈ QR6. Since the additional solutions are
points where the foot scuffs the ground, i.e., points where ḣ ≥ 0, we make the following assumption:

Assumption 1. Let α be parameters solving the optimization problem (16) and therefore guarantee
(PHZD). Furthermore, assume that θ− and θ+ = ∆θθ

− are the only two points in QR satisfying (21).

Reduced Order Hybrid Dynamics. The advantage of the partial zero dynamics representation is
that it yields a reduced-order hybrid system representation that dictates the behavior of the full order
dynamics of the system. We will explicitly construct this hybrid system, and establish properties of its
solutions relative to solutions of the full-order hybrid system.

Pick, once and for all, parameters α solving the optimization problem (16) and a point θ− satisfying
Assumption 1 with θ+ = ∆θθ

−. We can therefore compute z−1 = cθ− and z+
1 = cθ+. From this, since

(PHZD) is satisfied, the discrete change in z1 and z2 can be determined via [2, 36]:

z+
1 = c∆θθ

− (22)

z+
2 = ∆PZ(θ−)z−2

where θ− is a point that is chosen a priori and

∆PZ(θ−) := c∆θ̇(θ
−)ΨPZ(cθ−). (23)

This defines a linear 2-dimensional hybrid control system:

H CPZ = (DPZ, UPZ, SPZ,∆PZ, fPZ, gPZ). (24)

where the domain and guard are given by:

DPZ = {z ∈ R2 : z+
1 ≤ z1 ≤ z−1 }, (25)

SPZ = {z ∈ R2 : z1 = z−1 }. (26)

We will not (initially) restrict the control input v and, therefore, UPZ = R. The reset map, ∆PZ, is a
linear transformation as given by (22). Finally, the control system has fPZ(z) = APZz and gPZ(z) = BPZ.

PHZD Reconstruction. We can use the relationship between the reduced order PHZD and the full-
order dynamics, as afforded by the feedback control law, to reconstruct the full-order state of the system.

6Note that, due to the trigonometric functions that yield h, it may be necessary to consider subsets of the configuration
space QR that limit the number of solutions to (21).
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Note that since z1 is directly related to the parameterization of time, we can write yd,2(z1) = yd,2(ρ(θ), α)
wherein it was assumed that we are working with a fixed parameter set α. Therefore, defining

ΦPZ(z1) =

[
c
H

]−1(
z1

yd,2(z1)

)
(27)

ΨPZ(z1) =

[
c
H

]−1
(

1
∂yd,2(z1)
∂z1

)
it follows that:

ϑr(z) := ΦPZ(z1)

ϑ̇r(z) := ΨPZ(z1)z2
⇒ (ϑr(z), ϑ̇r(z)) ∈ PZα (28)

with z = (z1, z2)T . Note that if we pick coordinates η = (y2, ẏ2), since y2 is a relative degree 2 output
it follows that there is a diffeomorphism Π : (θ, θ̇) → (η, z). We also note that there is the canonical
embedding ιPZ : DPZ → DR given by ιPZ(z) = Π−1(0, z).

Key Properties.The entire purpose of the reduction step is prepare the ground for correct-by-construction
synthesis on the basis of a model of a size that is amenable to existing algorithms. To support this process,
it must be shown that correctness of the reduced-order closed-loop system induces correct behavior for
the full-order system in an appropriate neighborhood of the invariant surface. This is established next.

Suppose that we have a feedback control law v(z) that is applied to the hybrid control system H CPZ

with the end result being a hybrid system HPZ. The application of this control law in (11) via y1 (which
depends on v(z)) to H CR, yields a hybrid system HR.

Theorem 1. Let χHPZ = (I,Z), with Z = {zi}i∈N, be a solution to HPZ with τi+1 − τi ≥ τmin. If
χHR = (I, Cr), with Cr = {cri }i∈N where cri (t) = (ϑr(zi(t)), ϑ̇r(zi(t))), satisfies (Progress), (Upright), and
(C1)-(C3), then χHR is a physically realizable walking gait of HR.

Proof. We need only verify that if χHPZ is a solution to HPZ then χHR is a solution to HR; the remain-
ing statements then follow from the fact that (Progress), (Upright), and (C1)-(C3) are satisfied for the
reconstructed solution: cri (t) = (ϑr(zi(t)), ϑ̇r(zi(t))). To establish that χHR is a solution to HR, we must
verify both the continuous and discrete conditions on a solution to a hybrid system.

The continuous conditions on χHR are given by the requirement that ċri (t) = fcl(c
r
i (t)), where fcl is

the closed-loop dynamics obtained by applying v(z) to (3) via (19) and (11). Since the initial condition
(ϑr(z0(0)), ϑ̇r(z0(0))) ∈ PZα, and because the dynamics in the η and z coordinates evolve in a decoupled
fashion according to (13) and (14), we need only verify that y2(ϑr(zi(t))) = 0 and ẏ2(ϑr(zi(t)), ϑ̇r(zi(t))) = 0
for all t ∈ Ii and i ∈ N. This follows from the construction of ϑr and ϑ̇r and, specifically, (27) and (28).

The discrete conditions on χHR are given by (i), (ii) and (iii) as stated in Section 2. Condition (i)
is satisfied by Assumption 1 (which also implies (C4)), i.e., the boundary of the domain DR cannot be
reached until the guard SR is reached, and the configuration in which the guard is reached is given by θ−.
Similarly, (ii) is satisfied again because the first configuration where the guard is reached is θ−, z−1 = cθ−

and τi+1 satisfies (ii) for χHPZ . Finally, (iii) is satisfied again through the formulation of the reset map
(23).

The previous result concerned executions of the closed-loop hybrid model where the initial conditions lie
in the invariant surface defined by the partial zero dynamics. The next result strengthens the conclusions
of Theorem 1 to address executions with initial conditions drawn from an open neighborhood of the
invariant surface. This is clearly important for the applicability of the method. The results will also be
used in Section 4 to establish an attractivity property for the behavior designed through formal methods.

To establish this extension, we utilize a notion of distance between a set and solutions. In particular,
given a set S and an execution χHR :

dist(χHR , S) = sup
i∈N

inf
t∈Ii,x∈S

‖ci(t)− x‖. (29)
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Theorem 2. Let P ⊂ DPZ be an invariant set of H CPZ under a feedback control law v(z). Then
ιPZ(P ) ⊂ PZα, and for any γ > 0 there exists a δ > 0 such that for ‖η0‖ < δ any walking gait χHR(η0, z0)
with z0 ∈ P satisfies:

dist(χHR , ιPZ(P )) < γ.

Proof. Define κ(i, t) such that

κ(i, t) = inf
x∈ιPZ(P )

‖ci(t)− x‖ (30)

for arbitrary i ∈ N and t ∈ Ii. Moreover, since ιPZ is the canonical embedding ιPZ(z) = Π−1(0, z) and
because the dynamics of the system evolve in a decoupled fashion according to (13) and (14), it follows
that the only nontrivial component of the distance will be contributions from the y2 and ẏ2 dynamics.
Formally, writing (ηi(t), zi(t)) = Π(ci(t)) = Π(θi(t), θ̇i(t)), it follows that

κ(i, t) ≤ ‖ηi(t)‖ =

∥∥∥∥ yi2(t)
ẏi2(t)

∥∥∥∥
≤ λ1

ε
e−

λ2
ε τmin︸ ︷︷ ︸

β(ε)

∥∥∥∥ yi2(τi)
ẏi2(τi)

∥∥∥∥ (31)

for some constants λ1, λ2 > 0, where the second inequality follows from [4] since y2 and ẏ2 evolve according
to the linear system (14), picking t = τi+1, and utilizing the dwell time assumption: τi+1 − τi > τmin.

To understand the role of the discrete dynamics, we note that in the coordinates (η, z) we can decom-
pose the reset map as follows: ∆R◦Π−1(η, z) = (∆η(η, z),∆z(η, z)). The assumption of partial hybrid zero
dynamics (PHZD) implies that ∆η(0, z) = 0. By assumption ∆η is Lipschitz continuous with Lipschitz
constant L∆η

, wherein:
‖∆η(η, z)‖ = ‖∆η(η, z)−∆η(0, z)‖ ≤ L∆η‖η‖.

Combining this with (30) and (31) implies that:

κ(i, t) ≤ β(ε)i+1Li∆η
δ ∀t ∈ Ii (32)

for any i ∈ N. The RHS is a geometric sequence in i with ratio r(ε) = β(ε)L∆η
. Since β(ε)→ 0 as ε→ 0,

there exists an ε > 0 such that β(ε) < 1
L∆η

, i.e. such that r(ε) < 1, for all 0 < ε < ε. Thus, for all

0 < ε < ε we have that

dist(χHR , ιPZ(P )) = sup
i∈N

inf
t∈Ii

κ(i, t)

≤ sup
i∈N

r(ε)iβ(ε)δ (33)

= β(ε)δ

<
δ

L∆η

Therefore, picking δ < γL∆η yields the desired result.

4. Abstraction Based Controller Synthesis

In this section, we show how to synthesize an abstraction based controller for the linear hybrid sys-
tem H CPZ, defined in (24), enforcing the desired specifications by construction. The techniques to be
employed are described in [37] (see also [31] for an introduction to abstraction based controller synthesis)
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and were developed for discrete-time systems. Hence, we start by defining discrete-time executions for a
hybrid system H .

Let ts ∈ R+ be a sampling time and let χH = (I, C) be a hybrid execution of hybrid system H .
A discrete-time hybrid execution of H with sampling time ts, denoted by χH

d = (Id, Cd), is given by a
collection of time intervals Id = {Id,i}i∈N where Id,i = {τi, τi + ts, τi + 2ts, . . . , τi+1}, and by a collection
of functions Cd = {cd,i}i∈N where each cd,i : Id,i → D is given by the restriction of ci to the set Id,i.

The starting point for abstraction based controller synthesis is the construction of a finite-state ab-
straction S(H CPZ) of H CPZ by following the methods in [37]. This abstraction comes equipped with an
ε-approximate alternating simulation relation from S(H CPZ) to H CPZ guaranteeing that any controller
synthesized for S(H CPZ) can be refined to a controller for H CPZ resulting in the same closed-loop be-
havior up to an error of ε ∈ R+. In other words, let us denote by S(HPZ) the hybrid system resulting
from composing S(H CPZ) with a controller and let us denote by HPZ the hybrid system resulting from

composing H CPZ with the refined controller. Then, for every discrete-time hybrid execution χ
S(HPZ)
d

any corresponding discrete-time hybrid execution χHPZ

d satisfies:

dist
(
χ
S(HPZ)
d , χHPZ

d

)
≤ ε.

Moreover, ε is a design parameter that can be made as small as desired, at the expense of a larger
finite-state abstraction.

Convexity of Reachable Sets. The key technical assumption required for the results in [37] is the
possibility of computing an over-approximation of the reachable set of H CPZ. Hence, we describe in this
section how this can be efficiently done. We start by recalling a few notions.

A vector x ∈ Rn is a convex combination of m vectors x1, . . . , xm ∈ Rn if x can be written as

x =

m∑
i=1

λixi, λi ≥ 0,

m∑
i=1

λi = 1. (34)

A set is convex if it contains the convex combination of its elements. A point x ∈ B is called an extreme
point of a compact convex set B ⊂ Rn if it cannot be represented by a convex combination of any two
points x1, x2 ∈ B, with x1 6= x and x2 6= x. The convex hull of a set B ⊆ Rn is the set of all convex
combinations of points in B and is denoted conv(B). It follows that any compact convex set is the convex
hull of its extreme points.

Definition 3. The set reached by the trajectories of (19) from B ⊆ DPZ in time ts ∈ R+
0 under constant

input v is denoted by Rtsv (B) and defined as:

Rtsv (B) =
{
z′ ∈ R2 | z(0) ∈ B ∧ z(ts) = z′

}
,

where z(t) is a solution to (19) with the constant input v and initial condition z(0). Moreover, we define
Rv(B) by:

Rv(B) = ∪ts∈R+
0
Rtsv (B).

To simplify notation we write Rv(x) rather than Rv({x}) when B is the singleton {x}.
We now show that the intersection of Rv(B) with the guard set SPZ is a convex set.

Theorem 3. Consider the convex set B ⊆ R2 defined by:

B = [a1, b1]× [a2, b2],

with a1, a2, b1, b2 ∈ R, a1 < b1, and a2 < b2. Denote by ẑ1, . . . , ẑ4 ∈ B the extreme points of B. If the
linear dynamics (19) satisfies ż1 ≥ c on DPZ for some c > 0, then:

Rv(B) ∩ SPZ = conv{Rv(ẑ1) ∩ SPZ, . . . ,Rv(ẑ4) ∩ SPZ}.
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Proof. In this proof we denote by Ft : R2 → R2 flow of the linear system (19) with constant input v, i.e.,
if z(t) is the solution of (19) with initial condition z′ and constant input v then Ft(z

′) = z(t). We will also
say that (19) is transversal to the boundary of B at z′ ∈ B when ż1 6= 0 for z′ belonging to the vertical
boundaries and when ż2 6= 0 for z′ belonging to the horizontal boundaries.

We first state and prove two facts.

Fact 1: If z belongs to the boundary of Rv(B) ∩ SPZ, then z is the image under Ft of a boundary point
of B for some t ∈ R.

It suffices to show that Ft maps interior points of B to interior points of Rv(B) ∩ SPZ. But this
follows directly from the fact that F−t, the inverse of Ft, exists and is continuous. The inverse image of
an open set by a continuous map is an open set. Hence, let O′ ⊆ B be an open set containing a point
z′ in the interior of B and let ts satisfy Fts(z

′) = z ∈ SPZ. Since ż1 ≥ c > 0 and the guard is given by
z1 = z−1 , ts exists. Then the set O = F−ts(O

′) is an open set containing the point z in Rv(B) ∩ SPZ.
Since O ⊆ Rv(B) and O ∩ SPZ is open in the topology induced on SPZ by the standard topology in R2,
z is an interior point of Rv(B) ∩ SPZ.

Fact 2: If z belongs to the boundary of Rv(B) ∩ SPZ, then z cannot be the image under Ft of a point in
the boundary of B where (19) is transversal to the boundary.

We will show that if z′ belongs to the boundary of B and (19) is transversal to the boundary at z′,
then the flow takes z′ to an interior point of Rv(B) ∩ SPZ. Let O′ be an open set in the boundary of B
containing z′. Consider the set B′ = B ∪ Ft(O′) for sufficiently small t (t is positive if the vector field
points to the outside of B and negative otherwise). It is clear that Rv(B) = Rv(B′). Moreover, we can
now take an open (in R2) subset O of B′ containing z′. Applying the argument used to prove Fact 1, we
see that Ft takes z′ into an interior point of Rv(B) ∩ SPZ.

Proof of Theorem 3: Facts 1 and 2 tell us that boundary points of Rv(B) ∩ SPZ are the image under the
flow of extreme points of B or of boundary points of B where (19) is not transversal. The assumption
ż1 ≥ c > 0 implies that the transversality condition can only fail on the horizontal boundaries. Moreover,
the dynamics of z2 given by (19) shows that if (19) is not transversal at a point on a horizontal boundary
then all the points in that horizontal boundary are on the same trajectory. We thus conclude that boundary
points of Rv(B) ∩ SPZ are the image under the flow of extreme points of B. Let now γ : [0, 1]→ R2 be a
continuous curve contained in B and joining the extreme point ẑ1 to the extreme point ẑ2, i.e., γ(0) = ẑ1,
γ(1) = ẑ2, and γ(r) ∈ B for r ∈ [0, 1]. By continuity of the map Ft ◦γ we have Rv(∪r∈[0,1]{γ(r)})∩SPZ =
conv(Rv(ẑ1),Rv(ẑ2)). Since this argument does not depend on the choice of extreme points, the result
follows.

The abstraction techniques in [37] require the over-approximation of Rtsv (B) when the guard is not
reached in ts units of time. In this case the linearity of (19) implies that Rtsv (B) is a convex set and can
be computed as:

conv(Rtsv (ẑ1), . . . ,Rtsv (ẑ4)).

If the guard can be reached in ts units of time or less, then we need to over-approximate the set of points
that can be reached up to the time the guard is hit and immediately after the reset. This set can be
over-approximated by:

(conv(Rtsv (ẑ1), . . . ,Rtsv (ẑ4)) ∩ DPZ)

∪∆PZ (conv{Rv(ẑ1) ∩ SPZ, . . . ,Rv(ẑ4) ∩ SPZ}) . (35)

Once again, all the sets are convex and can thus be efficiently computed since we only have to perform
numerical simulations for the vertices of B.

Walking Gait Generation. One of the main advantages of abstraction based control is the possibility
to enforce the specifications by construction. In our case, for a stable robot walking gait, there are
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seven specifications that have to be satisfied: the (Dwell Time), (Progress) and (Upright) constraints
in Definition 1, as well as the physical requirements (C1), (C2), (C3), and (C4). For our system, the
constraints (Dwell Time), (Upright), and (C4) are enforced by the choice of output functions (8),(9) and
the feedback linearizing controller. The (Progress) constraint is automatically satisfied by the dynamics
since ż1 = z2 and DPZ only includes points where z2 is strictly positive. Therefore, we only have to cater
to the physical constraints (C1)-(C3).

We thus synthesize a controller forcing the closed-loop trajectories to remain in the set P = P1∩P2∩P3

for all time where each set Pi describes the constraint (Ci) in the PHZD:

P1 = {z ∈ DPZ : |u(ϑr(z), ϑ̇r(z))| < umax}
P2 = {z ∈ DPZ : |ϑ̇r(z)| < θ̇max}
P3 = {z ∈ DPZ : AZMPFst(ϑr(z), ϑ̇r(z), u(ϑr(z), ϑ̇r(z))) < 0}.

Main Result. Recall that we denote by HPZ the hybrid system obtained by composing H CPZ with the
refined controller. This composition restricts the behavior of H CPZ in two different ways: by restricting
the available inputs, and by restricting the initial conditions. The set of initial conditions is denoted by
DinitPZ and is a subset of DPZ. It then follows from Proposition 9.4 in [31] that the hybrid executions of
HPZ starting in DinitPZ remain in:

P ε = {z ∈ DPZ | ‖z − z′‖ ≤ ε for some z′ ∈ P},

for all time. By bounding the inter-sample behavior using a standard Lyapunov-type argument [22, 24, 17]
we conclude that the (continuous-time) hybrid executions of HPZ remain in P δ(ε,ts) for all time where δ
is a continuous and increasing function of ε and ts satisfying δ(ε, 0) = 0. Therefore, we can always find

a subset P of P and a choice of ts and ε so that P
δ(ε,ts) ⊆ P . By synthesizing a controller enforcing

the stricter constraints defined by P we then guarantee that executions remain in P as desired. This
discussion, when coupled with Theorem 1 and 2, can be summarized in the following result.

Theorem 4. Let HPZ be the hybrid system resulting from composing H CPZ with the controller obtained
by refining the controller synthesized for the finite-state abstraction of H CPZ. Any hybrid execution of
HPZ starting in DinitPZ remains in P for all time. Moreover, any hybrid execution of HR with initial
condition in ιPZ(DinitPZ ) is a physically realizable stable walking gait.

5. Simulation and Experimental Results

In this section, we present simulation and experimental results for the custom built bipedal robot
AMBER 3. Additionally, we include information about how the abstraction building software PESSOA
[27] is used to generate mappings for inputs to the zero dynamics. We present a brief description of
how this mapping is refined to a feedback controller. The end result is the realization of this controller in
simulation and the illustration that it is able to enforce constraints that were not enforceable by traditional
gait generation software. The section concludes with experimental realization on AMBER 3; this sets the
stage for a qualitative discussion in the next section.

To achieve the simulation results presented, we utilizes two control methods as a point of comparison:
existing hybrid zero dynamics based controllers for fully actuated robots that have proven successful
on hardware [34, 30, 15, 38], termed the “constant v” controller, and the abstraction-based controllers
presented in this paper. Importantly, the simulation results are performed to both show the improved
performance of the abstraction-based controller in terms of realizing the specifications enumerated in
the first part of this paper. In this context, the small gap between theory and simulation will be seen
(due to discretization and numeric approximation). The simulation results set the stage for experimental
realization on the robotic platform AMBER 3. Taking advantage of the significant gear ratio between
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(a) Phase portrait for the state of the system (θ, θ̇) over four steps. The maximum angular velocity, ±5rad/s
(Constraint (C1)), was never violated by the system under either controller.
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(b) The torques applied at each of the joints over four steps. The torque bounds of ±60Nm are illustrated with
horizontal black lines (Constraint (C2)). The torque remains bounded under each of the controllers.
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(c) Phase portrait for the zero dynamics coordinates (z1, z2) over four steps. In both cases, the controller induces
stable limit cycles in these coordinates

Figure 5: Simulations demonstrating different specifications for the walking gait obtained from a constant v controller as
generated in [21] and the formal methods controller.
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(a) Maximum violation of (C3) over four simulated steps. The upper bound of this constraint is equal to zero
as illustrated by the horizontal red line. As we can see, the constant v controller causes this constraint to be
significantly violated, while the formal methods controller obeys this bound.
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(b) Maximum violation of (C3) for constant v controller (left) and the formal methods controller (right) calculated
from experimental data. The upper bound of this constraint is equal to zero as illustrated by the horizontal black
line. For both of the controllers, the constraint is frequently violated; however, the formal methods controller
violates it to a lesser degree—this is evidenced by the moving average (in red). In particular, the constant v
controller has large spikes that violate the constraints, while the abstraction based controller only has small spikes
(corresponding to foot strike) where the constraints is violated. The difference between these controllers is further
illustrated in Fig. 11, wherein the actual ZMP point remains in the foot for a longer duration. See the discussion
at the end of this section for further details.

Figure 6: The maximum value of the violation of Constraint (C3), i.e. ||AZMPFst||∞ for simulated and experimental data.
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the actuators and the links to approximate the inverse dynamics controller, i.e., we approximate the
synthesized controllers with a time-based trajectory tracking implementation. Data from the experiments
will be presented in this section. A qualitative discussion of our interpretation of the experiments will
be presented in Sect. 6 so that fact and opinion are carefully separated. To the authors knowledge, the
experimental trials presented here will be the first time that a “correct-by-construction” controller in any
form, approximate or otherwise, has been implemented on a bipedal robot.

Control Synthesis. We consider two separate controllers: a nominal controller in which v is held at a
constant value and a controller in which v is selected according to the abstraction-based technique outlined
in Section 4. Both controllers were synthesized using the same set of parameters α found by solving (16)
with the additional constraints (C1) and (C2). No feasible solution could be found that satisfied (C3)
with constant v, so this constraint was relaxed.

The over-approximation of the reachable sets based on Theorem 3 has been implemented in the tool
PESSOA, see [27]. In order to compute the finite-state abstraction we restricted the set of states to the
operating region Zabstr = [−0.165, 0.16]×[0, 0.6] and the input space to Uabstr = [0.22, 0.6]. The operating
region Zabstr contains z−1 and z+

1 . The abstraction is then computed by dividing Zabstr into boxes B of
length 0.005, by quantizing the input space Uabstr with a resolution µ = 0.0025, and time discretization of
ts = 0.018 s. See [37] for the definition of these parameters. The state space is covered by 7153 boxes and
we consider 152 different input values. The abstraction was computed in about 3.5 hours on a computer
with a 2.6 GHz dual core processor. A controller for this abstraction that maintains the system within
the set (36) was found after less than 5 seconds.

The controller synthesized by PESSOA is a mapping ν : Zabstr → 2Qµ(Uabstr) such that ν(z) is the
set of all quantized inputs that can be applied at state z that can enforce safety 7. This is illustrated in
Fig. 7, where the total number of available inputs, i.e. |ν(z)|, is shown for each point z ∈ Zabstr. In the
state space of the abstraction, many states exist for which no input enforcing the specifications exists at
all; however these states are not part of DinitPZ and are never reached. The non-deterministic controller is
refined to a deterministic mapping

vfm(z) = arg min
v∈ν(z)

CoT (z, v), (36)

where CoT is the cost of transport. The input that is applied to the system, called here the “formal
methods controller”, is given as

v(t) = vfm(z(n(t)ts)) ∀t ∈ [n(t)ts, (n(t) + 1)ts) (37)

where n(t) is the maximum integer n such that nts < t

Simulation Results. Simulation results comparing the constant v controller and the formal methods
controller are shown in Fig. 5. Fig. 5a and Fig. 5c show four steps of AMBER 3 in the (θ, θ̇) plane, and
in the (z1, z2) plane, respectively. Note that for both the constant v controller and the formal methods
controller, when starting from some nearby point, the trajectory eventually settles into a stable periodic
orbit. This behavior is by design in the constant v controller, but this phenomenon occurs with the formal
methods controller even though we did not include it in the safety specification. In Fig. 5c, we see that
due to the varying v, z2 changes much more in the case of the abstraction based controller than in the
case of constant v. We also note that the constraint (C2) is satisfied since the magnitude of the angular
velocities never exceed 5 rad/s. Fig. 5b and Fig. 6a show the satisfaction of the torque constraint and
the ZMP constraint (C1) and (C3), respectively. The constant v controller is not able to enforce the ZMP
constraint, while the formal methods controller enforces all of the constraints. Together these simulation
results indicate that the formal methods controller can be used to generate a stable, physically realizable
walking gait, and in particular, is able to generate such a gait when other methods are insufficient.

7Notation: 2A is the power set of A and Q∆(B)is the discretization of B with resolution ∆.
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Figure 7: Number of available inputs for each state in the domain of the abstraction-based controller.

Figure 8: Tiles of the walking gait generated by the formal methods controller (video at [1].) The images in the top row are
from the point of view of the boom. The images in the bottom row were taken from outside the radius of the boom.
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Experimental Platform and Methods. Both the constant v and the approximated formal-methods
controllers are implemented on the AMBER 3 robot, shown in Fig. 2 and Fig. 3a. The kinematic
parameters of the robot are listed in Table 1. The main processing unit onboard the robot is a National
Instruments C-Rio. The C-Rio communicates with six ELMO motion controllers through an EtherCAT
network. Each controller powers a joint motor and reads data through an attached encoder. National
Instruments modules read sensor input from the torso encoder and push-buttons located on the heels
and toes. The software architecture used to control AMBER 3 is almost identical to the implementation
previously used for AMBER 2 (described in [21]).

We approximated the two controllers by integrating equation (19) forward over time with the input
v∗ = 0.34 for the constant v controller and v(t) for the formal methods controller. Then, we used the
mapping (28) to reconstruct the trajectories in the full state space of the robot. The reconstructed
trajectories were then tracked online via PD controllers at each joint 8.

Experimental Results. One step of the walking gait generated by the formal method’s controller is
illustrated in the tiles shown in Fig. 8. A video comparing the two controllers can be found at [1].
Experimental data collected from the time-based implementation of each controller is shown in Figures
9. Figure 9a illustrates that each gait is stable and shows that the maximum angular velocity bound of
±5 rad/s is respected. Similarly, Fig. 9b shows that the torque applied to each joint in the robot is well
within the bound of ±60 Nm.

The ZMP specification given by constraint (C3) is not directly measured by any sensor on the robot.
Instead, the data presented in Fig. 10 is calculated from the experimentally collected position, velocity and
torque at each of the robot’s joints. A related quantity that gives insight into the ability of the controllers
to keep the feet flat while walking (the reason for constraint (C3)) is the location of the Zero Moment
Point (ZMP) along the foot, i.e. the point along the ground in which the net moment due to the torque
acted on the robot and ground reaction forces is zero [7]. When this point is located inside the foot, the
foot does not roll. On the other hand, if the ZMP is in front of the foot, the heel is lifted, and if it is
located behind the foot, the toe is lifted. Figure 11 shows that the ZMP constraint is violated by each of
the controllers.

6. Qualitative Discussion

In this section, we provide our personal interpretation of the experiments, all the while keeping in mind
that any model will always be an approximation of reality, and hence even if we had “exactly” implemented
the “formally correct controller”, when placed in closed-loop with the robot, it would no longer be formally
correct. The experimental data show that neither controller satisfied the ZMP specification. This said, as
engineers, we should ask ourselves whether the experiments with the controller based on formal methods
revealed any redeeming qualities9 that merit further exploration.

Figure 10 shows the portion of time that the ZMP remains within the foot is 0.4975, 0.4835 and
0.7902 for the constant v trials, and 0.8352, 0.7652, and 0.7942 for the formal methods trials, respectively.
In a professional design, margins would be included when formulating the specifications. Such practical
precautions were not taken here because our goal was to qualitatively evaluate how a based on formal
methods would perform on a real robot. Figure 10 reveals, nevertheless, that the inclusion of very small
margins on the ZMP constraint would result in the formal method’s controller meeting the specification.
In our opinion, even though foot roll was not completely eliminated, the experiments indicate that the
controller based on formal methods does a better job of controlling foot roll than the constant velocity
controller.

8PD tracking was used instead of directly implementing the torque controllers because position and velocity measurements
on the hardware have proven to be more reliable than torque measurements.

9The reviewers objected to our interpretations unless we stated them with these caveats.
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(a) Phase portrait for the state of the system (θ, θ̇). The maximum allowed angular velocity, ±5rad/s (Constraint
(C1)), was never violated by any joint in the robot under either controller.
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(b) The torques applied at each of the joints of the robots. The torque bounds of ±60Nm are illustrated with
horizontal black lines (Constraint (C2)). The torque remains bounded under each of the controllers.

Figure 9: Experimental data collected from walking trials of AMBER 3 under the constant v controller (left) and the formal
methods controller (right).
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Figure 10: The violation of constraint (C3) for three experimental trials with the constant velocity controller and the formal
methods controller; note that this is the same quantity plotted in Fig. 6 except it is not plotted over a much longer time
window and over multiple experimental runs.
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Figure 11: The location of the zero moment point relative to the point on the ground directly below the stance ankle.
The black lines represent the boundaries of the foot; when the blue line indicating the instantaneous position of the ZMP
leaves the region bounded by the black lines, a violation of the ZMP constraint occurs, allowing the foot to roll about its
extremities. The portion of time the ZMP remains within the foot is 0.4975, 0.4835 and 0.7902 for the constant v trials and
0.8352, 0.7652, and 0.7942 for the formal methods controller.
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We attribute the violation of the ZMP constraint to two factors: the difference between the designed
pre-feedback control and the more reliable PD implementation on the physical hardware, and unmodeled
phenomena such as imperfections in the walking surfaces and interactions with the boom. Possible ways
to bridge these gaps include using counterexamples (i.e. data from failed experiments) in the synthesis
algorithm, refining the synthesized controller using progressively more complex models, and “robustifying”
the mapping of vfm by assigning inputs for states outside the safe region to drive the system back to
safety, i.e. render the safe set invariant and attractive. In addition, as mentioned above, in a professional
engineering implementation, margins would be included when doing the actual design.

7. Conclusion

In this paper, we showed how to combine the theory of virtual constraints with formal methods to
generate correct-by-construction controllers for a highly-dynamic non-linear system. The use of virtual
constraints reduces the dimension of the planning space of the problem, while abstraction-based control
synthesis allows for the synthesis of inputs in this low-dimensional space that enforce safety and hardware
constraints to yield physically realizable walking. The main theoretical result of this paper indicates that
this combination of methods yields a solution to the full-order system that satisfies given safety specifica-
tions. The practical relevance of the theoretical work was investigated by preforming the first experimental
implementation of a controller based on formal methods on a bipedal walking robot. The experiments
compared a formally correct controller and a heuristic controller. In our qualitative comparison of the
results, we argued that the controller based on formal methods was better able to satisfy important con-
straints on the robot’s evolution, in particular, the zero moment point constraint, than a nominal gait
found via optimization techniques. Future research directions include extending the technique in this pa-
per to handle nonlinear zero dynamics and using abstractions to synthesize controllers for underactuated
systems, e.g. bipedal robots with unactuated ankles.

Acknowledgments

This research is supported by NSF CPS Awards 1239055, 1239037 and 1239085. Experiments were
performed at Texas A&M University, College Station, Texas. The robot AMBER 3 was designed and
built by Eric Ambrose. The authors would like to thank Aakar Mehra for his assistance with experiments.

References

[1] AMBER-Lab. Abstraction-based control for AMBER 3.0. [Video file], Retrieved from http://youtu.

be/UKuI7cEOEzs.

[2] A. D. Ames. Human-inspired control of bipedal walking robots. Automatic Control, IEEE Transac-
tions on, 59(5):1115–1130, May 2014.

[3] A. D. Ames, E. A. Cousineau, and M. J. Powell. Dynamically stable bipedal robotic walking with NAO
via human-inspired hybrid zero dynamics. In Proceedings of the 15th ACM international conference
on Hybrid Systems: Computation and Control, pages 135–144. ACM, 2012.

[4] A. D. Ames, K. Galloway, K. Sreenath, and J. Grizzle. Rapidly exponentially stabilizing control
Lyapunov functions and hybrid zero dynamics. Automatic Control, IEEE Transactions on, 59(4):876–
891, 2014.
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