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Abstract— The goal of this paper is to assess the capacity
of Zeno phenomena to correctly predict the behavior of real
physical systems. We begin by considering electromechanical
hybrid systems. Formal conditions are given on when systems
of this form display Zeno behavior, in which case the hybrid
model is completed to allow for solutions to be carried past
the Zeno point. The end result is periods of unconstrained
and constrained motion, with transitions to the constrained
motion occurring at the Zeno point, i.e., a Zeno periodic orbit.
We then consider a double pendulum with a mechanical stop
controlled by a DC motor, use these formal methods to predict
the existence of a Zeno periodic orbit in simulation, and
verify through experimentation that Zeno behavior provides
an accurate description of the behavior of the physical system.

I. INTRODUCTION

Hybrid dynamical systems are systems that display both
continuous and discrete behavior [8], [15], [24]. As such,
they describe a large class of physical systems, espe-
cially those undergoing impacts. A fundamental phenomenon
which is unique to hybrid systems is Zeno behavior, where an
infinite number of discrete transitions occur in a finite amount
of time. Since its introduction, Zeno behavior has been well
studied due to the way in which it prevents the extension of
standard notions of solutions to the hybrid framework; Zeno
solutions, by definition, only exist for a finite period of time.

Zeno behavior has been well studied in the hybrid systems
community for ten years now [2], [6], [7], [9], [10], [11],
[26], yet the hybrid systems community still remains divided
over its existence in the real world. One side of the discussion
claims that since it occurs as a result of instantaneous discrete
changes in a system, which cannot occur in reality, Zeno
behavior itself does not occur in reality. As a result, Zeno
behavior is thus not interesting, and instead the model of
the system being studied should be refined so that Zeno
behavior does not occur. The other side of the discussion
claims that although Zeno behavior does not occur in reality,
modeling of systems with instantaneous discrete changes is
“close” to reality, and therefore system models with Zeno
behavior will display behavior that is “close” to the physical
behavior—it is therefore important to study Zeno behavior.
The authors, admittedly, come from the latter camp and
have established numerous formal results related to Zeno
behavior. Specifically, results that relate Zeno behavior to
a type of equilibria unique to hybrid systems, termed Zeno
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Fig. 1: Double pendulum with a mechanical stop.

equilibria, and the existence of Zeno behavior to the stability
of these equilibria (see [12], [14], [19], [21]). This allowed
for conditions for the existence of Zeno behavior, and for
hybrid models to be completed so that Zeno solutions can
be extended beyond their finite limit points.

The goal of this paper is to present a physical grounding
for the formal ideas that have been considered relating to
Zeno behavior. Specifically, this paper studies existence of
Zeno behavior in electromechanical hybrid systems, giving
conditions for the existence of Zeno behavior and verifying
these conditions through experimentation. To achieve these
results, we begin by considering a special class of hybrid
electromechanical systems modeling mechanical systems un-
dergoing impacts and driven by DC motors. Formal condi-
tions for the existence of Zeno behavior in systems of this
form are given, and these conditions are used to complete
the hybrid system model to allow for solutions to be carried
past the Zeno point—this results in periods of unconstrained
and constrained motion, with transitions to the constrained
motion occurring at the Zeno point. Utilizing this formal
theory, we consider a double pendulum with a mechanical
stop where the top link is driven by a permanent magnet
DC motor and demonstrate that, due to the mechanical
stop, the electromechanical hybrid model for this system
displays Zeno behavior. As a result, this model is completed
and, through simulation, we find a periodic orbit in this
completed system, i.e., a Zeno periodic orbit. We then verify,
through experimentation, that the formal methods provide an
accurate description of the behavior of the physical system—
the Zeno periodic orbit found through simulation occurs on
the physical system.



II. ELECTROMECHANICAL HYBRID SYSTEMS

In this section, we introduce the extended Lagrangian
system and eventually the associated extended Lagrangian
hybrid system. This section will also discuss the presence of
holonomic and unilateral constraints that will be important
due to the mechanical stop. Hybrid systems of this form have
been studied in the context of Lagrangian hybrid systems in
Zeno behavior, see [2], [3], [13], and were also formulated
as linear complementarity systems in [16] and [22].
Dynamical systems: Let q ∈ Q be the configuration space
of a mechanical system.1 We will consider the Lagrangian,
L : T Q→ R, describing mechanical or robotic systems:

L(q, q̇) =
1
2

q̇T M(q)q̇−V (q), (1)

yielding M(q)q̈ +C(q, q̇)q̇ + N(q) = ϒ, with ϒ being the
control input.

For an electrical system, the generalized coordinates are
chosen as inductor currents, ıTM = [ı1, ı2, ..., ınM ], and capacitor
voltages, vT

E = [v1,v2, ...,vnE ]. Therefore, when an electrical
system is included with a mechanical system (called the elec-
tromechanical system), we obtain the Extended Lagrangian,
Le : T Qe→ R, and is given by:

Le(q, q̇, ıM,vE) = L(q, q̇)+We(ıM,vE ,q), (2)

where We(ıM,vE ,q) is the energy stored in the magnetic and
electric fields of the system.

In this paper, we will consider a particular case of elec-
tromechanical system which comprises of nM permanent
magnet DC (PMDC) drives (since most of the electrome-
chanical systems have motors as primary actuators, including
the system considered in this paper). In this case We becomes:

We(ıM,q) =
1
2

ıTMLMıM−Kω cos(q)ıM. (3)

A detailed derivation of this realization can be found in [25].
LM ∈ RM×RM is the inductance matrix 2 and Kω ∈ RM×
RM is the diagonal matrix of motor constants of the motors.
The resulting motor dynamics is given by:

RMıM +LM ı̇M +Kω q̇ = VM(q, q̇), (4)

where RM ∈ RM×RM is the resistance matrix, VM ∈RM , a
function of position and velocity of the mechanical system,
is the feedback control law input in the form of voltage.
Also, the torque ϒ, will be a function of current ϒ(ıM) =
Kϕ ıM , where Kϕ ∈RM×RM is the diagonal matrix of torque
constants of the motors.

Defining the state of the system as x=(q, q̇, ıM), the vector
field, fLe associated with the extended Lagrangian Le of the
form (2), takes the following form:

ẋ = fLe(x) (5)

=

 q̇
M(q)−1(−C(q, q̇)q̇−N(q)+Kϕ ıM
L −1

M (VM(q, q̇)−RMıM−Kω q̇)

 .

1For simplicity, in the models considered, we assume that the configura-
tion space is identical to Rn

2having nM DC motors is equivalent to having nM magnetic fields

The readers should make note of the fact that the Lagrangian
(not We(ıM,q)) includes the mechanical dynamics of the
rotors and gearboxes.
Holonomic constraints: The constraints that we consider in
this paper are only mechanical constraints and not electrical
constraints. In the presence of a constraint, η , for the state
x = (q, q̇, ıM), we have (see [18]):

ẋ = f η

Le
(x) = fLe(x)+

 0
M(q)−1dη(q)T λ (q, q̇)

0

 . (6)

Here λ is the Lagrange multiplier which represents the

contact force and dη(q) =
(

∂η

∂q (q)
)T

.

Unilateral Constraints: The domain, guard and reset
map (or impact equations) will be obtained from unilateral
constraint h : Qe → R which gives the set of admissible
configurations of the system; we assume that the zero level
set h−1(0) is a smooth manifold.

Define the domain and guard, respectively, as

Dh = {(q, q̇, ıM) ∈ T Q : h(q)≥ 0}, (7)
Gh = {(q, q̇, ıM) ∈ T Q : h(q) = 0 and dh(q)q̇≤ 0}.

The reset map associated to a unilateral constraint is obtained
through impact equations of the form (see [5], [17]):

Rh(q, q̇, ıM) = (8) q
q̇− (1+ ε) dh(q)q̇

dh(q)M(q)−1dh(q)T M(q)−1dh(q)T

ıM


Here 0≤ ε ≤ 1 is the coefficient of restitution. This reset map
corresponds to rigid-body collision under the assumption of
frictionless impact, [5] and [23].

Definition 1: A simple electromechanical hybrid La-
grangian (or hybrid extended Lagrangian) is defined to
be a tuple Le = (Qe,Le,h), where Qe is the configuration
space (assumed to be3 Rn+nM+nE ), Le : T Qe → R is an
extended Lagrangian of the form (2), h : Qe → R is a
unilateral constraint. Given a hybrid extended Lagrangian
Le = (Qe,Le,h) , associated is the simple electromechanical
hybrid system (SEHS):

SHLe = (Dh,Gh,Rh, fLe).

If the electromechanical system were to be eliminated from
the Hybrid system, then SHLe becomes a Lagrangian Hy-
brid system consisting of only the dynamics of Lagrangian
systems.

III. ZENO BEHAVIOR

We now introduce Zeno behavior and the corresponding
notion of Zeno equilibria, and we consider the stability of
these equilibria. Note that space constraints prevent the in-
troduction of the definition of executions [21] but, intuitively
speaking, an execution χ = (Λ,I ,C ), where Λ ⊆ N is an

3Again, for nL DC motors alone, nC = 0, implying Qe ∈ Rn+nM



indexing set, I = {Ii}i∈Λ is a collection of intervals, e.g.,
Ii = [ti, ti+1], and C = {ci}i∈Λ is a set of trajectories, i.e.,
they must satisfy ċi(t) = fLe(ci(t)) on Ii along with some
“consistency” conditions: ci(ti+1) ∈ Gh and Rh(ci(ti+1)) =
ci+1(ti+1). An execution χ is Zeno if Λ = N and

t∞ := lim
k→∞

tk− t0 =
∞

∑
k=0

tk+1− tk < ∞.

Here t∞ is called the Zeno time. If χ is a Zeno execution of
a SEHS, SHLe , then its Zeno point is defined to be

x∞ = (q∞, q̇∞, ıM∞
) = lim

k→∞
ck(tk) = lim

k→∞
(qk(tk), q̇k(tk), ıMk(tk)).

These limit points are intricately related to a type of equilib-
rium point that is unique to hybrid systems: Zeno equilibria.

Definition 2: A Zeno equilibrium point of a SHS SH is
a point x∗ ∈ G such that R(x∗) = x∗ and f (x∗) 6= 0.

The following theorem, which is a straightforward ex-
tension of the results of [12], [13], [14] to simple elec-
tromechanical hybrid systems, provides sufficient conditions
for existence of Zeno executions in the vicinity of a Zeno
equilibrium point.

Theorem 1: Let SHLe be a simple electromechanical
Lagrangian hybrid system and let x∗ = (q∗, q̇∗, ı∗M) be a Zeno
equilibrium point of SHLe . If 0≤ ε < 1 and ḧ(q∗, q̇∗, ı∗M)< 0,
there exists a neighborhood W ⊂DLe of (q∗, q̇∗, ı∗M) such that
for every (q0, q̇0, ıM0) ∈ W , there is unique Zeno execution
χ of SHLe with c0(τ0) = (q0, q̇0, iM0).

This theorem is essential to this paper because, if a system
is determined to be Zeno through these conditions, it is
necessary to complete this system to allow solutions to be
carried past Zeno points.
Completed Hybrid Systems: A completed hybrid system
consists of hybrid dynamics and constrained dynamics, with
transitions between these two types of dynamics (see Fig. 2
for a graphical representation of a completed hybrid system).
The idea is that, if the system has stable Zeno equilibria
it evolves according to the hybrid dynamics until the Zeno
point is reached, at which time a transition to the constrained
dynamics is made. Formally, completed hybrid systems have
been defined in the following manner (see [3], [4], [16], [19],
[20], [21]):

SH Le =

 Dh if h(q) = 0 , dh(q)q̇ = 0,
and λ (q, q̇)> 0

SHLe otherwise

where Dh is the dynamical system on the surface h = 0
obtained by enforcing the holonomic constraint h.

We can consider solutions to completed hybrid systems
by concatenating solutions to its individual components. In-
tuitively, a solution to a completed hybrid system consists of
unconstrained motion, followed by constrained motion (when
the Zeno point is reached), followed again by unconstrained
motion (when the lagrange multiplier changes sign). This
idea is made precise in the following definition: Given a
completed system SH Le , a completed execution is χ of
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Fig. 2: A graphical representation of a SEHS and its associ-
ated completed hybrid system.

SH Le is a sequence of alternating hybrid and constrained
executions of χ = {χ(1), χ̃(2),χ(3), χ̃(4), . . .} that satisfies the
following conditions:

(i) For χ(i) and χ̃(i+1), τ
(i)
∞ = τ̃

(i+1)
0 and c(i)∞ =c̃(i+1)

0 (τ̃
(i+1)
0 )

(ii) For χ̃(i) and χ(i+1), τ̃
(i)
f =τ

(i+1)
0 and c̃(i)f = c(i+1)

0 (τ
(i+1)
0 )

where the superscript (i) denotes the values corresponding
to the ith execution χi or χ̃i, with t(i)∞ ,c(i)∞ denoting the Zeno
time and Zeno point in the case when the ith execution is a
Zeno execution χi.

A Zeno periodic orbit is a completed execution χ with
initial condition c̃(1)(0) = x∗ that satisfies c(2)∞ = c̃(3)(t(3)0 ) =

x∗. The period of χ is T = t(2)∞ = t̃(3)0 . In other words,
this orbit consists of a constrained execution starting at x∗,
followed by a Zeno execution with infinite number of non-
plastic impacts, which converges in finite time back to x∗. If
ε = 0, then it is called a simple periodic orbit.
Simulating completed hybrid systems. Due to the fact that
completed hybrid systems have Zeno executions, and because
it is not possible to compute the entirety of these executions,
a procedure must be given to simulate completed hybrid
systems. Such a procedure is developed formally in [20],
[21], but for the purposes of this paper, we only discuss the
practical aspects of this approach. First, a hybrid execution
is simulated, until it reaches an impact at some time tk, with
the state (q(tk), q̇(tk), ıM) satisfying |ḣ(q(tk))|< δ with δ > 0
a sufficiently small simulation parameter. (This implies that
the execution is “close” to the Zeno point which satisfies
ḣ(q(tk), q̇(tk), ıM(tk)) = 0.) When this condition is satisfied,
the hybrid execution is truncated and the algorithm applies
a reinitialization map, (q∗, q̇∗, ı∗M) = R∗(q(tk), q̇(tk), ıM(tk)),
with R∗ being the reset map (given in (8)) and ε = 0
(i.e., it applies a perfectly plastic impact). This guaranties
that (q∗, q̇∗, ı∗M) is a Zeno equilibrium. At this point, the
constrained dynamics (6) are simulated with (q∗, q̇∗, ı∗M) as
an initial condition. If it is detected that λ = 0, the simulation
switches back to the hybrid system and the process is
repeated.

IV. MODELING THE DOUBLE PENDULUM WITH A
MECHANICAL STOP

We now consider the hybrid system model of the physical
“Zeno system” that will be used: a double pendulum with
a mechanical stop and with the top link being controlled
by a PMDC motor (see Fig. 3). The goal of this section is
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Fig. 3: A graphical representation of a double pendulum
with a mechanical stop on the left and the circuit used for
controlling the motor on the right.

to discuss how this system is modeled as a hybrid system,
show formally that the system has Zeno behavior, use this
knowledge to complete the hybrid system model and finally
simulate the system. In the end we find that the simulated
system has a Zeno periodic orbit. It is important to note
that the analysis done in this section is much like what
any researcher would do studying hybrid systems with Zeno
behavior.

Consider a double pendulum with a mechanical stop
(Fig. 3). This system has rigid links link1 and link2 of
lengths L1,L2 and masses m1L,m2L respectively, attached to
each other through a passive joint. Link1 is actuated by a
permanent magnet DC motor for controlling the trajectories
(see Fig. 3). In this model the masses of the first link (m1L)
and the rotating parts (armature and gear box) of the motor
(mm) are included together and denoted as m1(:= m1L+mm),
while the mass of the second link is denoted as m2 (:= m2L).
The resulting shift in the center of mass is also included
while computing the moments of inertia.

To construct the hybrid system model for the double
pendulum, we begin by considering the hybrid extended
Lagrangian: LPe = (QPe ,LPe ,hPe), where QPe is the config-
uration space spanned by q = (θ1,θ2, ım), where θ1 is the
angle between link1 and vertical line from top end of link1
to ground (see Fig. 3), θ2 is relative angle between link1 and
link2 (constrained to be positive), and ım is the motor current.
LPe is the extended Lagrangian for the electromechanical
system (given in Fig. 3), which thus has the standard form
given in (2). The unilateral constraint hPe describes the
constraint on link2, i.e., it is not allowed to pass through
the mechanical stop, and is thus given by: hPe(q) = θ2.
The state-space of the electromechanical system is given
by (q, q̇, ım) = (θ1,θ2, θ̇1, θ̇2, ım). From the hybrid extended
Lagrangian LPe we obtain a simple hybrid system given by:

SHPe = (DPe ,GPe ,RPe , fPe).

The domain and guard are given as in (7). In particular,
the guard GPe is the subset of domain DPe where link2 is
“locked” to mechanical stop. The reset map, RPe(q, q̇, ım) is
given as in (8). Finally, the vector field fPe is an extended
Lagrangian vector field of the form (5) with the vector ıM
having only one motor, ım.

Torque is controlled indirectly by varying the voltage
inputs to the motors. A simple P-D control law is adopted
with θ1, θ̇1 being the inputs:

Vin(q, q̇) =−Kpθ1−Kd θ̇1, (9)

Formally verifying Zeno behavior. We now verify Theo-
rem 1 for the double pendulum model considered. This is an
important step in the simulation process, because if the model
has stable Zeno equilibria it implies that it will display Zeno
behavior for a non-trivial set of initial conditions. Therefore,
the model must be completed to allow solutions to be taken
past the Zeno points.

For the double pendulum, the set of Zeno equilibria is:

ZP = {(θ1,θ2, θ̇1, θ̇2, im) ∈ DP : θ2 = 0, θ̇2 = 0, fPe 6= 0},

that is, the set of Zeno equilibria are the set of points where
the lower link is “locked”. Taking the second derivative of the
unilateral constraint hPe(q, q̇, ım) leads to ḧPe(q, q̇, ım) = θ̈2.
Therefore as long as θ̈2 < 0 immediately after every impact
the system is Zeno stable (per Theorem 1). We thus need to
find the conditions on the configuration of the system where
this inequality holds. In particular θ̈2(t) can be obtained
from the vector field (5): θ̈2(t) = ( fPe(x))θ̇2

. Due to the
complexity of the model being considered, it is not possible
to simply state this expression in symbolic form. But, for the
double pendulum considered for the experiment, with all the
physical parameters substituted, ḧ is found to be:

ḧP(q, q̇, im) =−(2.92437)im− (27.5697)sin(θ1).

The blue region in the figure on the right indicates where
ḧ < 0. It can be inferred from this figure that the stable Zeno

1

mı

equilibria are essentially the
set of Zeno equilibria where
θ1 is positive, i.e., where the
pendulum is swinging “to the
right.” This is a large set of
configurations, so the double
pendulum with a mechanical
stop is Zeno and it is neces-
sary to complete this hybrid
system.

Since we will have stable Zeno equilibria at a large
collection of points, the system can be taken past the Zeno
point, which basically means that the double pendulum will
“lock” after Zeno execution. That is, we obtain a vector
field, f η

Pe
, for the constrained system (in better terms “locked

system”), which is given as in (6) with η = hPe . Thus,
the completed double pendulum system is given as in (9)
by SH Le , where the DhPe

is the “constrained” system
with dynamics given by f η

Pe
corresponding to the pendulum

being “locked” and SHLe is the “unconstrained system”
corresponding to the pendulum being in “unlocked” position.
We can thus simulate this resulting complete hybrid system
through the methods discussed in Section III.

Simulating the Double Pendulum Model. Fig. 1(a) shows
a CAD model of the double pendulum considered for the
experiment. Even with the data sheets, it was not possible
to estimate all of these values accurately due to missing
data. For example, the inertia of the motor specified in
the datasheet was without the gearbox included, and the
resistance specified was only for the motor winding. Thus
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Fig. 4: Simulation results: phase portrait of (θ1, θ̇1) (left) and
(θ2, θ̇2) (right) for the completed hybrid system modeling the
double pendulum with a mechanical stop.

the estimated parameters had to be “tuned” to better reflect
the physical properties of the system that it was not possible
to estimate. For example, the resistance of the circuit, which
have MOSFETs (Metal Oxide Semi-conductor Field Effect
Transistor) for switching the H-bridge, must be taken into
account when determining the parameters of the system. As
a result, and coupled with a detailed Solidworks model (Fig.
1(a)), we are able to determine the physical parameters of
the system used in simulation, to accurately represent the
physical parameters of the system shown in Fig. 1.

From the estimated physical parameters for the system, we
are able to simulate the double pendulum. Since the goal is to
validate Zeno behavior as a modeling paradigm, we looked
for control gains that resulted in a Zeno periodic orbit in
the completed hybrid system. In particular, we found that
for Kp = 2.5 and Kd =−1 the end result is a Zeno periodic
orbit, which can be seen in Fig. 4 which shows the phase
portraits for this orbit. The top of the (θ1, θ̇1) phase portrait
shows jumps due to the presence of impacts of link2 with
link1. Same is true with the second phase portrait, (θ2, θ̇2),
with jumps being seen when θ2 = 0. Since the impacts are
lossy, θ̇2 changes from negative to positive and with a smaller
magnitude. Eventually, the solution reaches the Zeno point
and then the pendulum resumes normal constrained motion.
This cycle repeats with alternating phases of constrained and
unconstrained motions, indicating that it is a Zeno periodic
orbit. The goal is to show that this simulated behavior
correctly predicts the behavior of the physical system.

V. EXPERIMENTAL RESULTS

This section discusses an experiment conducted on a
double pendulum with a mechanical stop as shown in Fig.
1. The goal is to run this physical system with the same
controllers as those that were established in the previous
section to show that, in fact, the simulation of this system
captures its physical behavior (especially with respect to
Zeno behavior, completion, and the existence of a Zeno
periodic orbit).

A ball, with a coefficient of restitution ε = 0.2, is placed
at the mechanical stop; which includes both the energy lost
in the ball and the gear train impacts. The system is then run
with the same PD gains as the simulated system. The end
result is a very close agreement with the simulated behavior
of the system as can be seen in Fig. 5, indicating that

Zeno behavior provides a valid approximation of physical
phenomena. Link to the video comparing real and simulated
behavior is given in [1]. Of special interest is the fact that
simulation predicted the existence of a Zeno periodic orbit,
and we find that the physical system in fact displays a
Zeno periodic orbit (or a physical approximation thereof). To
better understand this comparison between real and simulated
behavior, we discuss the plots in Fig. 5.

Fig. 5(a) shows a comparison of simulated and physical
behaviors over time with the periods of constrained and un-
constrained motions indicated. In the lower waveform, when
θ2 > 0 the system evolves according to the hybrid system
SHPe until the Zeno point is reached, i.e., θ2 = 0, or link1 is
“locked” to link2. At this point, the system evolves under the
constrained dynamics, until the Lagrange multiplier changes
sign and link2 is released. Fig. 5(b) zooms into one period
of the Zeno periodic orbit consisting of a Zeno solution,
followed by a constrained phase, followed by release; the
simulated and physical behavior are compared in this figure.
One can see that there is very good agreement between the
predicted and actual behavior. In particular, the simulation
accurately models the first large impact in the system, and
the constrained period in simulation approximates small
oscillations in the physical system as a result of vibrations
in the ball when link2 is in contact with link1.

The phase portraits of the simulated and physical system
are compared in Fig. 5(c); again, the simulated system has
a Zeno periodic orbit and we find that the physical system
also displays a “Zeno periodic orbit” in the sense that the
phase portrait is periodic with phases of constrained and
unconstrained motion, with transitions to the constrained
phase occurring at the Zeno point and transitions to the
unconstrained phases occurring when the link2 is released.
Note that the largest deviations for the physical and simulated
system don’t occur near the impacts and Zeno points, but are
rather due to time delays in the change of motor direction at
the apex of the pendulum motion; a delay that the simulated
system was not able to completely capture. The behavior of
the simulated vs. the physical system near the Zeno point can
be seen in Fig. 5(d). Here one can see very good agreement
between the the predicted and actual behavior. The physical
system clearly has an accumulation point in the set of Zeno
equilibria just as the theory predicted.

VI. CONCLUSION

This paper showed that Zeno behavior, while it may not
“exist” in reality, provides an accurate model of real physical
phenomena. Moreover, all of the theory that has been proven
over the years with respect to Zeno behavior is practically
useful in predicting the behavior of physical systems. In
particular, we utilized the notions of extended Lagrangians,
Zeno equilibria, hybrid system completion, and Zeno pe-
riodic orbits. The existence of these theoretical constructs
were used to properly simulate the Zeno system modeling
a double pendulum with a mechanical stop. A physical
version of this system was built, and the same controller
applied to the simulated system was applied to this physical



system. The end result was very good agreement between the
simulated and physical behavior. This provides evidence for
the claim that Zeno behavior provides a good approximation
to phenomena that can occur in physical systems. As such,
studying this behavior is an important research direction.
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(a) The trajectories over time of both θ1 and θ2 with the transitions
from the unconstrained dynamics indicated.
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(b) A zoomed region showing the Zeno impacts following by the
constrained dynamics for both the real and simulated system.

(c) The phase portraits, and hence the Zeno periodic orbits, again
for the simulated and real behavior.
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(d) A zoomed in region in the phase portrait near where the Zeno
behavior occurs; the Zeno point is the origin of this figure.

Fig. 5: The simulated vs. physical behavior of the double
pendulum with a ball with a coefficient of restitution of 0.2.


