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ABSTRACT
Bipedal robots are prime examples of complex cyber-physical
systems (CPS). They exhibit many of the features that make
the design and verification of CPS so difficult: hybrid dy-
namics, large continuous dynamics in each mode (e.g., 10 or
more state variables), and nontrivial specifications involving
nonlinear constraints on the state variables. In this paper,
we propose a two-step approach to formally synthesize con-
trol software for bipedal robots so as to enforce specifications
by design and thereby generate physically realizable stable
walking. In the first step, we design outputs and classical
controllers driving these outputs to zero. The resulting con-
trolled system evolves on a lower dimensional manifold and
is described by the hybrid zero dynamics governing the re-
maining degrees of freedom. In the second step, we construct
an abstraction of the hybrid zero dynamics that is used to
synthesize a controller enforcing the desired specifications to
be satisfied on the full order model. Our two step approach
is a systematic way to mitigate the curse of dimensionality
that hampers the applicability of formal synthesis techniques
to complex CPS. Our results are illustrated with simulations
showing how the synthesized controller enforces all the de-
sired specifications and offers improved performance with
respect to a controller that was utilized to obtain walking
experimentally on the bipedal robot AMBER 2.

1. INTRODUCTION
Legged robots are complex highly dynamic CPS. As a

concrete example, consider MABEL shown in Fig. 1. This
bipedal robot possesses highly nonlinear, non-order preserv-
ing, non-convex dynamics described by a hybrid model with
14 state variables and four actuators [23]. To enable MA-
BEL to accept a set of high-level locomotion commands over
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Figure 1: (a) The planar (2D) biped MABEL was developed
for the study of highly dynamic locomotion. (b) High-level
motion primitives in MABEL to allow walking over very
rough ground without tripping. While tools for automatic
low-level control algorithm synthesis are well developed, at
the state machine level, all tuning was done by hand for lack
of appropriate tools. “Probable correctness” was established
through extensive simulation and experiments.

a network, and successfully execute the commands while re-
sponding automatically and safely to significant uncertainty
in the assumed profile of the environment, the finite state
machine shown in Fig. 1 was designed [22]. It allowed MA-
BEL to compose on the fly a set of low-level control algo-
rithms executing a handful of motion primitives. A team
of graduate students spent countless hours perfecting the
transition conditions among the various nodes of the state
machine. Each time a small change was made in one of
the software or hardware components, such as adjusting a
transition condition or adding a sensor, the entire state ma-
chine had to be completely retested, leading often to the
redesign of other software components. There is a pressing
need to understand this, and more general CPSs, in a way
that allows for the automatic synthesis of embedded control
software that is provably correct by construction.

In this paper, we begin to lay the groundwork for this
correct-by-construction control software design process in
the context of highly dynamic systems. In particular, the
specific bipedal robot that will be studied is AMBER 2 [18,



33] as shown in Fig. 2a. We consider a walking gait with the
simplest discrete structure, resulting in a single-mode hy-
brid model with 12 state variables and 6 actuators. While we
seek formal guarantees on the behavior of the 12-dimensional
closed-loop system, we do not propose to perform formal
synthesis on a model this large. Similarly to the work in [5,
6], we focus on the regulation of certain system outputs and
use advanced nonlinear control methods to transform the
highly complex dynamics to a simpler, more tractable sys-
tem which is amenable to the correct-by-construction syn-
thesis techniques. In contrast to [5, 6], where the authors
exploit differential flatness to reduce the nonlinear synthesis
problem to a controller design problem for a chain of inte-
grators, our method applies to the aforementioned hybrid
system with non-flat outputs. Specifically, in our approach
the chain of integrators is forced to be at equilibrium and
we apply the symbolic abstraction techniques to a hybrid
system that lives on an attractive, hybrid-invariant, low-
dimensional manifold which is “complementary” to the state
space of the integrators [2, 30]. The low-dimensional hy-
brid subsystem is called the Hybrid Zero Dynamics (HZD),
and its solutions can be used to reconstruct the solutions
of the high-dimensional hybrid system. The end result is
the ability to guarantee specifications on the full-order high-
dimensional system via the reduced order representation en-
coded by the HZD.

There is a growing interest in the synthesis of correct-by-
construction controllers for robotic applications as evidenced
by the growing body of work on this topic [28, 7, 16, 8]. Al-
though the techniques we employ for synthesis are based on
the symbolic abstraction techniques described in [27], what
sets the results in this paper apart from prior work is the
complexity of the system being controlled. In particular, as
previously mentioned, the hybrid model for AMBER 2 re-
quires 12 state variables, and control synthesis for a model of
this size is far larger than what has been previously reported
in the literature. The key to scaling the symbolic controller
synthesis techniques to this level of complexity is the new
design flow based on the HZD. This is the main contribution
of the paper as we believe that its applicability transcends
the specific formal synthesis technique we employ and the
robotics domain in which we develop the result.

The rest of the paper is laid out as follows: We begin by
introducing hybrid systems in Section 2, with a special focus
on the hybrid model of walking robots with a single domain.
In addition, we introduce the notion of a stable walking gait
(without requiring periodicity), and give conditions that en-
sure that these walking gaits are physically realizable. In
Section 3, we introduce a means for dimension reduction
through the use of a pre-feedback controller that renders a
low-dimensional surface hybrid invariant yielding HZD. Im-
portantly, for this initial result, the controller also results in
linear dynamics on the hybrid zero dynamics surface and,
ultimately, a two-dimensional linear hybrid system. We es-
tablish the first theoretic results of the paper in Section 3,
wherein it is shown that solutions of the HZD lift to solutions
of the full-order hybrid system and that the HZD manifold
is stable as a set. Section 4 introduces the main results of
the paper: a means for formally constructing controllers via
the HZD to yield provably stable walking gaits that satisfy
physical realizability constraints. The paper concludes with
Section 5 where simulation results utilizing the correct-by-
construction controller are presented.

2. BIPEDAL ROBOT MODELS, WALKING
GAITS AND PHYSICAL CONSTRAINTS

In this section, we present a formalism for hybrid systems
that is sufficient for modeling bipedal walking robots. After
the introduction of these models, we present a definition
of a walking gait for a bipedal robot along with associated
physical realizability constraints. This will set the stage for
formal controller synthesis for bipedal robots.

Hybrid Systems & Executions. We begin by introduc-
ing hybrid (control) systems (also referred to as systems with
impulse effects [10, 11]). We consider hybrid systems with
one domain because the specific biped models considered in
this paper applies to flat-footed walking; for more complex
foot behavior, more elaborate hybrid systems must be con-
sidered [9, 11, 12, 33].

A (simple) hybrid control system is a tuple,

H C = (D, U, S,∆, f, g), (1)

where D is the domain with D ⊆ Rn a smooth submani-
fold of the state space Rn, U ⊆ Rm is the set of admissible
controls, S ⊂ D is a proper subset of D called the guard or
switching surface, ∆ : S → D is a smooth map called the
reset map, and (f, g) is a control system on D, i.e., in coor-
dinates: ẋ = f(x) + g(x)u with u ∈ U . A hybrid system is
a hybrid control system with U = {0}; a particular example
would include a closed-loop hybrid system, meaning that a
feedback controller has been applied, defining the inputs as
functions of the state. In this case,

H = (D, S,∆, f),

where f is a dynamical system on D ⊆ Rn, i.e., ẋ = f(x).
For the sake of simplicity, and without loss of generality

for the formal results presented, we will consider infinite
solutions (or hybrid flows or executions) of a hybrid system
H . Motivated by existing definitions [17, 30, 9, 15], we
define a solution to a hybrid system H by the tuple:

χH = (I, C),

where I = {Ii}i∈N is a hybrid interval where Ii = [τi, τi+1]
with τi, τi+1 ∈ R and τi ≤ τi+1, and C = {ci}i∈N is a collec-
tion of solutions to f , i.e., ċi(t) = f(ci(t)) for all t ∈ Ii. In
addition, we require the following conditions to hold:

(i) ci(t) ∈ D for all t ∈ Ii, i ∈ N,

(ii) τi+1 = inf{t ≥ τi : ci(t) ∈ S},

(iii) ∆(ci(τi+1)) = ci+1(τi+1).

The initial condition for a hybrid flow is x0 = c0(τ0). When
we wish to make explicit the initial condition of χH we will
write χH (x0).

Robotic Hybrid System Models. Utilizing the formula-
tion of hybrid systems, we will now construct hybrid system
models for bipedal robots. Specifically, we will consider a
hybrid control system of the form:

H CR = (DR, UR, SR,∆R, fR, gR). (2)

The constructions of this section will be presented in the
general case of a robot with a single discrete phase of walk-
ing, i.e., they will not be specific to the robot—AMBER 2—
that will be considered in this paper. As a result they are



applicable to both 2D and 3D robots in the case of full ac-
tuation, including humanoid robots. It is important to note
that the constructions considered in this paper do not apply
to robots with underactuation (since, in this case, there will
not be actuation in the zero dynamics), yet future work will
be devoted to considering this case as well.

Continuous Dynamics: Let QR be the configuration space
of a robot with n degrees of freedom, i.e., n = dim(QR),
with coordinates θ ∈ QR. For the sake of definiteness, it
may be necessary to choose QR to be a subset of the actual
configuration space of the robot so that global coordinates
can be defined, i.e., such that QR is embeddable in Rn, or
more simply QR ⊂ Rn. Calculating the mass and inertia
properties of each link of the robot, coupled with the Euler-
Lagrange equations [20, 26], yields the affine control systems
(fR, gR):

fR(θ, θ̇)=

[
θ̇

−D−1(θ)C(θ, θ̇)

]
, gR(θ)=

[
0

D−1(θ)B

]
. (3)

where D is the mass-inertia matrix, C contains the Cori-
olis/centrifugal effects and gravitational terms, and B ∈
Rn×n is the actuation matrix and assumed to be nonsin-
gular, i.e., there is one independent actuator for each degree
of freedom. Such robot models are said to be fully actu-
ated. Finally, since we are assuming full-actuation, the set
of admissible values is given by UR ⊆ Rn.

Domain and Guard: The domain specifies the allowable
configuration of the system as specified by a unilateral con-
straint function h; for the bipeds considered in this pa-
per, this function specifies that the non-stance foot must
be above the ground, i.e., h is the height of the non-stance
foot and the system is subject to the unilateral constraint
h ≥ 0. Therefore, the domain DR is given by:

DR =
{

(θ, θ̇) ∈ TQR : h(θ) ≥ 0
}
, (4)

where TQR is the tangent bundle of QR. The guard is just
the boundary of the domain with the additional assumption
that the unilateral constraint is decreasing:

SR =
{

(θ, θ̇) ∈ TQR : h(θ) = 0 and dh(θ)θ̇ < 0
}
, (5)

where dh(θ) is the Jacobian of h at θ.

Discrete Dynamics. The discrete dynamics of the robot
determine how the velocities of the robot change when the
foot impacts the ground, while simultaneously swapping the
roles of the “stance” and “non-stance” legs. In particular,
the reset map ∆R is given by:

∆R : SR → DR, ∆R(θ, θ̇) =

[
∆θθ

∆θ̇(θ)θ̇

]
, (6)

where ∆θ is the relabeling of the configuration variable asso-
ciated with the stance and non-stance leg at impact. Here,
∆θ̇ determines the change in velocity due to impact (see [13,
11] for a detailed discussion).

Example 1. The model for the bipedal robot AMBER
2 considered in this paper is a special case of (2), with
the parameters, e.g., masses, lengths and inertias, deter-
mined from a high-fidelity SolidWorks model. In particu-
lar, AMBER 2 is a 2D 7-link bipedal robot with feet (addi-
tional details regarding the development of the model can be
found in [18]). For this initial study, a simplified flat-footed

(a) Sideview of
AMBER 2.

(b) Joint angles. (c) Outputs.

Figure 2: The bipedal robot AMBER 2 (a), the joint angles
(b) and outputs (c).

gait will be assumed, resulting in a 6 degree of freedom 12-
state model. The coordinates of QR ⊂ R6 are denoted by
θ = (θsa, θsk, θsh, θnsh, θnsk, θnsa)T where, as illustrated in
Fig. 2b, θsa is the angle of the stance ankle, θsk is the an-
gle of the stance knee, θsh is the angle of the torso with
the stance thigh, θnsh is the angle of the non-stance thigh
with the torso, and θnsk is the angle of the non-stance (or
swing) knee, and θnsa is the angle of the non-stance ankle
(or foot). Since AMBER 2 is fully actuated, based upon this
choice of coordinates B = I6 ∈ R6×6. Note that we will take
UR = R6 for AMBER 2, and impose physical constraints
that will restrict the admissible inputs to a subset of UR as
will be discussed at the end of this section.

Walking Gaits. To discuss physical constraints, it is nec-
essary to consider solutions to the hybrid system obtained
by applying feedback control to H CR. In particular, sup-
pose a feedback controller u(θ, θ̇) is applied to (2) with the

end result being a hybrid system HR. Let χHR(θ0, θ̇0) be

a solution to this system with initial condition (θ0, θ̇0) and

ci(t) = (θi(t), θ̇i(t)). In addition, let pxcom(θ) be the hori-

zontal position of the center of mass of the robot, ṗxcom(θ, θ̇)
the velocity of the forward position of the center of mass,
and pycom(θ) be the vertical position of the center of mass.
Then we formalize the following notion of a walking gait for
a bipedal robot.1

Definition 1. A solution χHR(θ−, θ̇−) to HR is a walk-

ing gait if (θ−, θ̇−) ∈ SR and there exist2 constants τmin >
0 and pmin

com > 0 such that

τi+1 − τi > τmin (Dwell Time)

ṗxcom(θi(τi+1), θ̇i(τi+1)) > 0 (Progress)

min
t∈Ii

pycom(θi(t)) > pmin
com (Upright)

for all i ∈ N. A walking gait is stable if for all γ > 0
there exists a δ > 0 such that all solutions χHR(θ0, θ̇0) with

(θ0, θ̇0) ∈ Bδ(θ−, θ̇−) ∩ SR satisfy:

(θi(τi+1), θ̇i(τi+1)) ∈ Bγ(θ−, θ̇−) ∩ SR (Stable)

and are walking gaits.

1We define a ball of radius δ > 0 around a point x by
Bδ(x) = {y ∈ DR : ‖x− y‖ < δ}.
2These constants are practically defined by the user based
upon the desired behavior of the walking gait.



Note that the given conditions for a walking gait are nei-
ther necessary nor sufficient for walking in general. Rather,
they are used to single out “desired” features in a walking
gait. In this case, the conditions ensure that there are no
instantaneous transitions (e.g., no Zeno behavior [15]), guar-
antee that the center of mass makes forward progress via a
velocity condition, and ensure that the robot is sufficiently
upright (as defined by the user through pmin

com). Finally, note
that due to the fact that we are only considering infinite
solutions, inherent in this definition is the notion that the
walking gait is indefinite.

Physical Specifications. The following physical specifica-
tions are required of a walking gait χHR :

Torque Bounds: From the definition of a hybrid control sys-
tem, any input belonging to UR is allowed, yet we explicitly
indicate the performance limitations of actuators through an
additional physical constraint on a walking gait given by:

sup
t∈Ii, i∈N

‖u(θi(t), θ̇i(t))‖∞ < umax, (C1)

where u is the control law that generated the gait and umax is
the maximum joint torque achievable by all of the actuators
(this is assumed to be a uniform number for the sake of
simplicity).

Velocity Bounds: As with torque bounds, we require that
the maximum joint velocity stays under a maximum value,
θ̇max, as specified by the actuators. In particular:

sup
t∈Ii, i∈N

‖θ̇i(t)‖∞ < θ̇max. (C2)

ZMP Constraints3: We require that the feet remain flat
during a walking gait, which results in zero moment point
(ZMP) type constraints [29, 11]. If ηst(θ) is the position and
orientation of the stance foot with respect to a fixed inertial
frame, then ZMP conditions are determined by viewing ηst
as a holonomic constraint. In particular, if Jηst is the jaco-
bian of ηst, then the forces and moments at the stance foot
are given by:

Fst(θ, θ̇, u) = (7)

(JηstD(θ)−1JTηst)
−1(JηstD(θ)−1(C(θ, θ̇)−Bu)− J̇ηst θ̇),

where Fst ∈ R3 for 2D walking robots and Fst ∈ R6 for
3D walking robots. Conditions so that the foot does not
roll during walking can be expressed through inequality con-
straints of the form:

sup
t∈Ii, i∈N

AZMPFst(θi(t), θ̇i(t), u(θi(t), θ̇i(t))) < 0, (C3)

where AZMP depends on the physical parameters of the feet
of the robot.

Foot Height Constraints: To achieve walking gaits on phys-
ical bipedal robots, it is important that the swing foot does
not “scuff” before the end of a step. We introduce, therefore,
foot scuffing constraints. Let h(θ) be the height (y position)
of the non-stance (swing) foot, then we require that:

τi+1 = inf{t > τi : h(θi(t)) = 0}. (C4)

Note that this condition prevents the case when the foot
“scuffs” the ground (h(θ) = 0) before reaching the guard

3Note that we could also consider friction conditions in a
similar fashion but will omit doing so for brevity.

(where ḣ(θ, θ̇) < 0). As a result, this is a stronger condition
that the one imposed on solutions (and, specifically, (ii)).
We also note that such a τi+1 must exist due to the dwell
time condition in Definition 1.

Definition 2. A walking gait χHR is physically real-
izable if it satisfies constraints (C1)-(C4).

Example 2. For AMBER 2, based upon the specifica-
tions of its actuators coupled with appropriate factors of
safety, umax = 8 Nm and θ̇max = 5 rad/s. For the ZMP

constraints, Fst = (F fxst , F
fy
st , F

mz
st ) (see [11]) since AMBER

2 is a 2D robot, and the ZMP constraints are determined by:

AZMP =

[
0 −lh −1
0 −lt 1

]
,

where lt and lh are the length to the toe from the ankle and
heel from the ankle, respectively.

3. DIMENSION REDUCTION THROUGH
CONTROL

To achieve dimensionality reduction in bipedal robots, we
will utilize the notion of a virtual constraint [2, 11, 30].
In particular, we will consider relative degree 2 outputs
wherein the goal is to drive these outputs to zero. This
will restrict the full-order dynamics of the robot to a low-
dimensional surface—termed the partial zero dynamics—
wherein the evolution of the system may be dictated by rel-
ative degree 1 outputs. Through pre-feedback control laws,
the dynamics of the relative degree 1 outputs defines a 2-
dimensional linear hybrid control system. We will demon-
strate that solutions of this reduced-order hybrid system
yield solutions to the full-order dynamics.

Virtual Constraints. Consider virtual constraints (or out-
puts) of the following form [2, 11]:

y1(θ, θ̇, v) = ya,1(θ, θ̇)− v, (8)

y2(θ, α) = ya,2(θ)− yd,2(ρ(θ), α), (9)

where y1 and y2 will be chosen so that they are relative
degree 1 and (vector) relative degree 2, respectively. In this

case, ya,1(θ, θ̇) is the “actual” velocity-based output and v
is the “desired” velocity. In the following, we will view v as
the control input to the system (after pre-feedback), and we
synthesize v through formal methods. Similarly, ya,2(θ) is
the actual vector of outputs that modulate the posture of
the robot and yd,2(ρ(θ), α) gives the desired evolution of the
associated configuration variables as dictated by parameters
α in the desired evolution of the virtual constraints and a
parameterization of time ρ(θ).

For the sake of simplicity, we will assume that the virtual
constraints have a linear structure, namely

ya,1(θ, θ̇) = cθ̇
ya,2(θ) = Hθ

s.t. rank

([
c
H

])
= n, (10)

and that ρ(θ) = cθ − cθ+, where θ+ is the configuration at
the beginning of a step, and will be specified later. The goal
is to drive both the velocity and posture modulating outputs
to zero, i.e., y1 → 0 and y2 → 0.

Example 3. In the case of AMBER 2, the virtual con-
straints considered in this paper are illustrated in Fig. 2c.



In particular, as discussed in [18], ya,1 is the linearized ve-
locity of the hip, v is the desired velocity of the hip, ya,2
consists of a vector of configuration based functions and yd,2
is the time solution to a linear mass-spring-damper system
parameterized by the linearized position of the hip.

Pre-Feedback Control. To set the stage for obtaining the
reduced order dynamics that will be used to synthesize con-
trollers for the system, we begin by applying a“pre-feedback”
controller based upon feedback linearization [25] (note that
this controller is a slight modification of the controller pre-
sented in [2, 3]). With the goal of driving y2 → 0 and
shaping the dynamics of y1 to be that of a linear system
with control input v, consider the feedback controller:

u
(α,ε)
FB (θ, θ̇) = −A−1(θ, θ̇)

([
0

LfRLfRy2(θ)

]
(11)

+

[
LfRya,1(θ, θ̇)

2 1
ε
LfRy2(θ, θ̇)

]
+

[
1
ε
y1(θ, θ̇)

1
ε2
y2(θ, α)

])
,

with control gain ε > 0 and decoupling matrix:

A(θ, θ̇) =

[
LgRya,1(θ, θ̇)

LgRLfRy2(θ, θ̇, α)

]
. (12)

Here L denotes the Lie derivative [25], and we assume that

the decoupling matrix is invertible. It follows that u
(α,ε)
FB (θ, θ̇)

results in dynamics on the outputs given by:

ẏa,1 = −1

ε
y1 (13)

ÿ2 = −2
1

ε
ẏ2 −

1

ε2
y2 (14)

and therefore, for a control gain ε > 0, the control law u
(α,ε)
FA

renders the outputs exponentially stable [25]. That is, in the
case when v is a constant (and hence ẏa,1 = ẏ1), the virtual
constraints y1 → 0 and y2 → 0 exponentially at a rate of 1

ε
.

Partial Hybrid Zero Dynamics. While the introduced
controller drives y1 → 0 and y2 → 0, we want to be able
to modulate the relative 1 degree output (through v), while
forcing the relative 2 degree output to remain zero and hence
form an invariant surface. This motivates the introduction
of the partial zero dynamics surface [2]:

PZα = {(θ, θ̇) ∈ TQR : y2(θ, α) = 0, LfRy2(θ, θ̇, α) = 0}.
(15)

We say that the hybrid system (2) has partial hybrid zero
dynamics (PHZD)4 if:

∆R(SR ∩PZα) ⊂ PZα. (PHZD)

In particular, we can choose the parameters α so that this
holds through an optimization of the form:

α∗ = argmin
α∈R5(n−1)

CostHD(α) (16)

s.t. ∆R(SR ∩PZα) ⊂ PZα. (17)

Note that the cost can be chosen based upon the specific
objective of interest, i.e., minimizing the cost of transport,
and that this optimization can be stated only in terms of the
parameters α through the constructions introduced in [2].

4This formulation is based upon the notion of hybrid zero
dynamics for underactuated bipedal robots [31].

The notion of PHZD allows for the construction of a hy-
brid system model for the reduced order dynamics defined
by the surface (15). In particular, we reformulate the con-
structions in [30] in a way applicable to full-actuation [2].
Because of the specific form of ya,1 in (10) due to the lin-
ear output assumption, we begin by picking the following
coordinates for the partial zero dynamics surface:

z1 = cθ (18)

z2 = ya,1(θ, θ̇) = cθ̇

where c ∈ R1×n as introduced in (10). As a result of the fact
that we have full actuation and have completely linearized
the dynamics with (11), the relative degree 1 output (8)
evolves according to (13). Therefore, the partial hybrid zero
dynamics evolve according to the linear ODE:

ż1 = z2 (19)

ż2 = −1

ε
(z2 − v).

where v ∈ R is viewed as a control input. The end result is,
therefore, a linear control system:

ż = APZz +BPZv (20)

with APZ and BPZ obtained from (19).

Impact Configurations. It is important to note that the
proper choice of parameters α that determine the partial
zero dynamics surface determine the configuration of the
robot at impact (foot strike). In particular, the configura-
tion of the robot at impact, θ−, is determined by the follow-
ing requirement:

θ− = θ s.t.

[
y2(θ, α)
h(θ)

]
=

[
0
0

]
. (21)

By virtue of the form of the relabeling matrix, ∆θ, it follows
that if h(θ−) = 0 then h(θ+) = 0 for θ+ = ∆θθ

−. Moreover,
from the fact that y2(θ, α) ∈ Rn−1, for the proper choice of
relative degree 2 outputs and parameters α, (21) has at least
two solutions for θ ∈ QR5. Since the additional solutions are
points where the foot scuffs the ground, i.e., points where
ḣ ≥ 0, we make the following assumption:

Assumption 1. Let α be parameters solving the opti-
mization problem (16) and therefore guarantee (PHZD). Fur-
thermore, assume that θ− and θ+ = ∆θθ

− are the only two
points in QR satisfying (21).

Reduced Order Hybrid Dynamics. The advantage of
the partial zero dynamics representation is that it yields
a reduced-order hybrid system representation that dictates
the behavior of the full order dynamics of the system. We
will explicitly construct this hybrid system, and establish
properties of its solutions relative to solutions of the full-
order hybrid system.

Pick, once and for all, parameters α solving the optimiza-
tion problem (16) and a point θ− satisfying Assumption 1
with θ+ = ∆θθ

−. We can therefore compute z−1 = cθ− and
z+

1 = cθ+. From this, since (PHZD) is satisfied, the discrete

5Note that, due to the trigonometric functions that yield h,
it may be necessary to consider subsets of the configuration
space QR that limit the number of solutions to (21).



change in z1 and z2 can be determined via [2, 31]:

z+
1 = c∆θθ

− (22)

z+
2 = ∆PZ(θ−)z−2

where θ− is a point that is chosen a priori and

∆PZ(θ−) := c∆θ̇(θ
−)ΨPZ(cθ−). (23)

This defines a linear 2-dimensional hybrid control system:

H C PZ = (DPZ, UPZ, SPZ,∆PZ, fPZ, gPZ). (24)

where the domain and guard are given by:

DPZ = {z ∈ R2 : z+
1 ≤ z1 ≤ z−1 }, (25)

SPZ = {z ∈ R2 : z1 = z−1 }. (26)

We will not (initially) restrict the control input v and, there-
fore, UPZ = R. The reset map, ∆PZ, is a linear transfor-
mation as given by (22). Finally, the control system has
fPZ(z) = APZz and gPZ(z) = BPZ.

PHZD Reconstruction. We can use the relationship be-
tween the reduced order PHZD and the full-order dynam-
ics, as afforded by the feedback control law, to reconstruct
the full-order state of the system. Note that since z1 is di-
rectly related to the parameterization of time, we can write
yd,2(z1) = yd,2(ρ(θ), α) wherein it was assumed that we are
working with a fixed parameter set α. Therefore, defining

ΦPZ(z1) =

[
c
H

]−1(
z1

yd,2(z1)

)
(27)

ΨPZ(z1) =

[
c
H

]−1
(

1
∂yd,2(z1)

∂z1

)
it follows that:

ϑr(z) := ΦPZ(z1)

ϑ̇r(z) := ΨPZ(z1)z2
⇒ (ϑr(z), ϑ̇r(z)) ∈ PZα (28)

with z = (z1, z2)T . Note that if we pick coordinates η =
(y2, ẏ2), since y2 is a relative degree 2 output it follows that

there is a diffeomorphism Π : (θ, θ̇) → (η, z). We also note
that there is the canonical embedding ιPZ : DPZ → DR
given by ιPZ(z) = Π−1(0, z).

Key Properties. We now establish the key properties of
hybrid systems obtained through PHZD as they relate to
the full order dynamics of hybrid systems. First, suppose
that we have a feedback control law v(z) that is applied to
the hybrid control system H C PZ with the end result being
a hybrid system HPZ. The application of this control law
in (11) via y1 (which depends on v(z)) to H CR, yields a
hybrid system HR.

Theorem 1. Let χHPZ = (I,Z), with Z = {zi}i∈N, be
a solution to HPZ with τi+1 − τi ≥ τmin. If χHR = (I, Cr),

with Cr = {cri }i∈N where cri (t) = (ϑr(zi(t)), ϑ̇r(zi(t))), satis-
fies (Progress), (Upright), and (C1)-(C3), then χHR is a
physically realizable walking gait of HR.

Proof. We need only verify that if χHPZ is a solution
to HPZ then χHR is a solution to HR; the remaining state-
ments then follow from the fact that (Progress), (Upright),
and (C1)-(C3) are satisfied for the reconstructed solution:

cri (t) = (ϑr(zi(t)), ϑ̇r(zi(t))). To establish that χHR is a
solution to HR, we must verify both the continuous and
discrete conditions on a solution to a hybrid system.

The continuous conditions on χHR are given by the re-
quirement that ċri (t) = fcl(c

r
i (t)), where fcl is the closed-loop

dynamics obtained by applying v(z) to (3) via (19) and (11).

Since the initial condition (ϑr(z0(0)), ϑ̇r(z0(0))) ∈ PZα, and
because the dynamics in the η and z coordinates evolve in a
decoupled fashion according to (13) and (14), we need only

verify that y2(ϑr(zi(t))) = 0 and ẏ2(ϑr(zi(t)), ϑ̇r(zi(t))) = 0
for all t ∈ Ii and i ∈ N. This follows from the construction
of ϑr and ϑ̇r and, specifically, (27) and (28).

The discrete conditions on χHR are given by (i), (ii) and
(iii) as stated in Section 2. Condition (i) is satisfied by
Assumption 1 (which also implies (C4)), i.e., the boundary
of the domain DR cannot be reached until the guard SR is
reached, and the configuration in which the guard is reached
is given by θ−. Similarly, (ii) is satisfied again because the
first configuration where the guard is reached is θ−, z−1 =
cθ− and τi+1 satisfies (ii) for χHPZ . Finally, (iii) is satisfied
again through the formulation of the reset map (23).

The next result is an extension of Theorem 1 that will
allow for the stability of walking gaits to be established in
Section 4. To establish this, we will utilize a notion of dis-
tance between a set and solutions. In particular, given a set
S and an execution χHR :

dist(χHR , S) = inf
t∈Ii,i∈N,x∈S

‖ci(t)− x‖. (29)

Theorem 2. Let P ⊂ DPZ be an invariant set of H C PZ

under a feedback control law v(z). Then ιPZ(P ) ⊂ PZα, and
for any γ > 0 there exists a δ > 0 such that for ‖η0‖ < δ
any walking gait χHR(η0, z0) with z0 ∈ P satisfies:

dist(χHR , ιPZ(P )) < γ.

Proof. To establish this result, we note that

dist(χHR , ιPZ(P )) ≤ inf
x∈ιPZ(P )

‖ci(t)− x‖ (30)

for arbitrary t ∈ Ii and i ∈ N. Moreover, since ιPZ is the
canonical embedding ιPZ(z) = Π−1(0, z) and because the
dynamics of the system evolve in a decoupled fashion accord-
ing to (13) and (14), it follows that the only nontrivial com-
ponent of the distance will be contributions from the y2 and
ẏ2 dynamics. Formally, writing (ηi(t), zi(t)) = Π(ci(t)) =

Π(θi(t), θ̇i(t)), it follows that

inf
x∈ιPZ(P )

‖ci(t)− x‖ ≤ ‖ηi(t)‖ =

∥∥∥∥ yi2(t)
ẏi2(t)

∥∥∥∥
≤ λ1

ε
e−

λ2
ε
τmin︸ ︷︷ ︸

β(ε)

∥∥∥∥ yi2(τi)
ẏi2(τi)

∥∥∥∥ (31)

for some constants λ1, λ2 > 0, where the second inequality
follows from [4] since y2 and ẏ2 evolve according to the linear
system (14), picking t = τi+1, and utilizing the dwell time
assumption: τi+1 − τi > τmin.

To understand the role of the discrete dynamics, we note
that in the coordinates (η, z) we can decompose the reset
map as follows: ∆R ◦ Π−1(η, z) = (∆η(η, z),∆z(η, z)). The
assumption of partial hybrid zero dynamics (PHZD) implies
that ∆η(0, z) = 0. By assumption ∆η is Lipschitz continu-
ous with Lipschitz constant L∆η , wherein:

‖∆η(η, z)‖ = ‖∆η(η, z)−∆η(0, z)‖ ≤ L∆η‖η‖.



Combining this with (30) and (31) implies that:

dist(χHR , ιPZ(P )) ≤ β(ε)i+1Li∆ηδ (32)

for any i ∈ N. Since β(ε) → 0 as ε → 0, there exists an
ε > 0 such that β(ε) < 1

L∆η
for all 0 < ε < ε. Therefore,

picking δ < γL∆η yields the desired result.

4. ABSTRACTION BASED CONTROLLER
SYNTHESIS

In this section, we show how to synthesize an abstraction
based controller for the linear hybrid system H C PZ, defined
in (24), enforcing the desired specifications by construction.
The techniques to be employed are described in [32] (see also
[27] for an introduction to abstraction based controller syn-
thesis) and were developed for discrete-time systems. Hence,
we start by defining discrete-time executions for a hybrid
system H .

Let ts ∈ R+ be a sampling time and let χH = (I, C) be
a hybrid execution of hybrid system H . A discrete-time
hybrid execution of H with sampling time ts, denoted by
χH
d = (Id, Cd), is given by a collection of time intervals
Id = {Id,i}i∈N where Id,i = {τi, τi + ts, τi + 2ts, . . . , τi+1},
and by a collection of functions Cd = {cd,i}i∈N where each
cd,i : Id,i → D is given by the restriction of ci to the set Id,i.

The starting point for abstraction based controller synthe-
sis is the construction of a finite-state abstraction S(H C PZ)
of H C PZ by following the methods in [32]. This abstraction
comes equipped with an ε-approximate alternating simula-
tion relation from S(H C PZ) to H C PZ guaranteeing that
any controller synthesized for S(H C PZ) can be refined to a
controller for H C PZ resulting in the same closed-loop be-
havior up to an error of ε ∈ R+. In other words, let us
denote by S(HPZ) the hybrid system resulting from com-
posing S(H C PZ) with a controller and let us denote by
HPZ the hybrid system resulting from composing H C PZ

with the refined controller. Then, for every discrete-time

hybrid execution χ
S(HPZ)
d any corresponding discrete-time

hybrid execution χHPZ
d satisfies:

dist
(
χ
S(HPZ)
d , χHPZ

d

)
≤ ε.

Moreover, ε is a design parameter that can be made as small
as desired, at the expense of a larger finite-state abstraction.

Convexity of Reachable Sets. The key technical as-
sumption required for the results in [32] is the possibility
of computing an over-approximation of the reachable set of
H C PZ. Hence, we describe in this section how this can be
efficiently done. We start by recalling a few notions.

A vector x ∈ Rn is a convex combination of m vectors
x1, . . . , xm ∈ Rn if x can be written as

x =

m∑
i=1

λixi, λi ≥ 0,

m∑
i=1

λi = 1. (33)

A set is convex if it contains the convex combination of its
elements. A point x ∈ B is called an extreme point of a
compact convex set B ⊂ Rn if it cannot be represented by
a convex combination of any two points x1, x2 ∈ B, with
x1 6= x and x2 6= x. The convex hull of a set B ⊆ Rn
is the set of all convex combinations of points in B and is
denoted conv(B). It follows that any compact convex set is
the convex hull of its extreme points.

Definition 3. The set reached by the trajectories of (19)
from B ⊆ DPZ in time ts ∈ R+

0 under constant input v is
denoted by Rtsv (B) and defined as:

Rtsv (B) =
{
z′ ∈ R2 | z(0) ∈ B ∧ z(ts) = z′

}
,

where z(t) is a solution to (19) with the constant input v
and initial condition z(0). Moreover, we define Rv(B) by:

Rv(B) = ∪
ts∈R+

0
Rtsv (B).

To simplify notation we write Rv(x) rather than Rv({x})
when B is the singleton {x}.

We now show that the intersection of Rv(B) with the
guard set SPZ is a convex set.

Theorem 3. Consider the convex set B ⊆ R2 defined by:

B = [a1, b1]× [a2, b2],

with a1, a2, b1, b2 ∈ R, a1 < b1, and a2 < b2. Denote by
ẑ1, . . . , ẑ4 ∈ B the extreme points of B. If the linear dynam-
ics (19) satisfies ż1 ≥ c on DPZ for some c > 0, then:

Rv(B) ∩ SPZ = conv{Rv(ẑ1) ∩ SPZ, . . . ,Rv(ẑ4) ∩ SPZ}.

Proof. In this proof we denote by Ft : R2 → R2 flow of
the linear system (19) with constant input v, i.e., if z(t) is
the solution of (19) with initial condition z′ and constant
input v then Ft(z

′) = z(t). We will also say that (19) is
transversal to the boundary of B at z′ ∈ B when ż1 6= 0 for
z′ belonging to the vertical boundaries and when ż2 6= 0 for
z′ belonging to the horizontal boundaries.

We first state and prove two facts.

Fact 1: If z belongs to the boundary of Rv(B) ∩ SPZ, then
z is the image under Ft of a boundary point of B for some
t ∈ R.

It suffices to show that Ft maps interior points of B to
interior points ofRv(B)∩SPZ. But this follows directly from
the fact that F−t, the inverse of Ft, exists and is continuous.
The inverse image of an open set by a continuous map is an
open set. Hence, let O′ ⊆ B be an open set containing a
point z′ in the interior of B and let ts satisfy Fts(z

′) = z ∈
SPZ. Since ż1 ≥ c > 0 and the guard is given by z1 = z−1 , ts
exists. Then the set O = F−ts(O

′) is an open set containing
the point z in Rv(B)∩SPZ. Since O ⊆ Rv(B) and O∩SPZ

is open in the topology induced on SPZ by the standard
topology in R2, z is an interior point of Rv(B) ∩ SPZ.

Fact 2: If z belongs to the boundary of Rv(B) ∩ SPZ, then
z cannot be the image under Ft of a point in the boundary
of B where (19) is transversal to the boundary.

We will show that if z′ belongs to the boundary of B
and (19) is transversal to the boundary at z′, then the flow
takes z′ to an interior point of Rv(B) ∩ SPZ. Let O′ be
an open set in the boundary of B containing z′. Consider
the set B′ = B ∪ Ft(O′) for sufficiently small t (t is positive
if the vector field points to the outside of B and negative
otherwise). It is clear that Rv(B) = Rv(B′). Moreover, we
can now take an open (in R2) subset O of B′ containing z′.
Applying the argument used to prove Fact 1, we see that Ft
takes z′ into an interior point of Rv(B) ∩ SPZ.

Proof of Theorem 3: Facts 1 and 2 tell us that boundary
points of Rv(B) ∩ SPZ are the image under the flow of ex-
treme points of B or of boundary points of B where (19) is



not transversal. The assumption ż1 ≥ c > 0 implies that
the transversality condition can only fail on the horizontal
boundaries. Moreover, the dynamics of z2 given by (19)
shows that if (19) is not transversal at a point on a horizon-
tal boundary then all the points in that horizontal boundary
are on the same trajectory. We thus conclude that bound-
ary points of Rv(B) ∩ SPZ are the image under the flow of
extreme points of B. Let now γ : [0, 1] → R2 be a contin-
uous curve contained in B and joining the extreme point
ẑ1 to the extreme point ẑ2, i.e., γ(0) = ẑ1, γ(1) = ẑ2, and
γ(r) ∈ B for r ∈ [0, 1]. By continuity of the map Ft ◦ γ
we have Rv(∪r∈[0,1]{γ(r)}) ∩ SPZ = conv(Rv(ẑ1),Rv(ẑ2)).
Since this argument does not depend on the choice of ex-
treme points, the result follows.

The abstraction techniques in [32] require the over-approx-
imation of Rtsv (B) when the guard is not reached in ts units
of time. In this case the linearity of (19) implies thatRtsv (B)
is a convex set and can be computed as:

conv(Rtsv (ẑ1), . . . ,Rtsv (ẑ4)).

If the guard can be reached in ts units of time or less, then
we need to over-approximate the set of points that can be
reached up to the time the guard is hit and immediately
after the reset. This set can be over-approximated by:(

conv(Rtsv (ẑ1), . . . ,Rtsv (ẑ4)) ∩ DPZ

)
∪∆PZ (conv{Rv(ẑ1) ∩ SPZ, . . . ,Rv(ẑ4) ∩ SPZ}) . (34)

Once again, all the sets are convex and can thus be effi-
ciently computed since we only have to perform numerical
simulations for the vertices of B.

Walking Gait Generation. One of the main advantages
of abstraction based control is the possibility to enforce the
specifications by construction. In our case, for a stable robot
walking gait, there are seven specifications that have to be
satisfied: the (Dwell Time), (Progress) and (Upright) con-
straints in Definition 1, as well as the physical requirements
(C1), (C2), (C3), and (C4). For our system, the constraints
(Dwell Time), (Upright), and (C4) are enforced by the choice
of output functions (8),(9) and the feedback linearizing con-
troller. The (Progress) constraint is automatically satisfied
by the dynamics since ż1 = z2 and DPZ only includes points
where z2 is strictly positive. Therefore, we only have to cater
to the physical constraints (C1)-(C3).

We thus synthesize a controller forcing the closed-loop tra-
jectories to remain in the set P = P1 ∩ P2 ∩ P3 for all time
where each set Pi describes the constraint (Ci) in the PHZD:

P1 = {z ∈ DPZ : |u(ϑr(z), ϑ̇r(z))| < umax}

P2 = {z ∈ DPZ : |ϑ̇r(z)| < θ̇max}

P3 = {z ∈ DPZ : AZMPFst(ϑr(z), ϑ̇r(z), u(ϑr(z), ϑ̇r(z))) < 0}.

The over-approximation of the reachable sets based on Theo-
rem 3 has been implemented in the tool Pessoa, see [24]. In
order to compute the finite-state abstraction we restrict the
set of states to the operating region Zabstr = [−0.12, 0.13]×
[0, 0.8] and the input space to Uabstr = [0.02, 0.8]. Note
that Zabstr contains z−1 and z+

1 . The abstraction is then
computed by dividing the state space Zabstr into boxes B
of length 0.005, by quantizing the input space Uabstr with
a resolution µ = 0.005, and time discretization of ts = 0.05.
See [32] for the definition of these parameters and their re-
lation to the finite-state abstraction. For these parameters,

the state space is covered by 8211 boxes and we consider 157
different input values. The abstraction can be computed in
about four hours on a computer with a 2.4 GHz dual core
processor. A controller for this abstraction is found after 4.5
seconds.

Main Result. Recall that we denote by HPZ the hybrid
system obtained by composing H C PZ with the refined con-
troller. This composition restricts the behavior of H C PZ

in two different ways: by restricting the available inputs,
and by restricting the initial conditions. The set of initial
conditions is denoted by DinitPZ and is a subset of DPZ. It
then follows from Proposition 9.4 in [27] that the hybrid
executions of HPZ starting in DinitPZ remain in:

P ε = {z ∈ DPZ | ‖z − z′‖ ≤ ε for some z′ ∈ P},

for all time. By bounding the inter-sample behavior using a
standard Lyapunov-type argument [19, 21, 14] we conclude
that the (continuous-time) hybrid executions of HPZ remain

in P δ(ε,ts) for all time where δ is a continuous and increasing
function of ε and ts satisfying δ(ε, 0) = 0. Therefore, we can
always find a subset P of P and a choice of ts and ε so

that P
δ(ε,ts) ⊆ P . By synthesizing a controller enforcing

the stricter constraints defined by P we then guarantee that
executions remain in P as desired. This discussion, when
coupled with Theorem 1 and 2, can be summarized in the
following result.

Theorem 4. Let HPZ be the hybrid system resulting from
composing H C PZ with the controller obtained by refining
the controller synthesized for the finite-state abstraction of
H C PZ. Any hybrid execution of HPZ starting in DinitPZ re-
mains in P for all time. Moreover, any hybrid execution
of HR with initial condition in ιPZ(DinitPZ ) is a physically
realizable stable walking gait.

5. SIMULATION RESULTS
In this section, we present simulation results for AMBER

2 and compare them against simulation results for a nominal
controller that was used to realize walking experimentally on
AMBER 2 [18] (a video of the walking gait on the robot can
be seen at [1]). In particular, the parameters α solving (16)
are taken from [18]; in that paper, a constant control input,
v = v∗, was utilized to achieve the walking gait. This is in
contrast to the state-dependent v(z) chosen by the abstrac-
tion based controller as constructed in the previous section.
The simulation results for the constant v controller and the
formally synthesized controller are shown in Fig. 3. The
resulting walking gait obtained via the abstraction based
controller is illustrated in Fig. 4b.

As mentioned before, there are 157 possible inputs in the
discrete abstraction. Depending on the state there might
exist several inputs which satisfy all constraints (see Fig. 4a
where Zabstr is shown together with the number of available
inputs at each point in Zabstr). When this is the case, the
controller uses this degree of freedom by selecting the v that
minimizes the cost of transport at this state. For the tra-
jectory shown in the plots, the maximal number of available
inputs at a state is 71, and the state with the minimal num-
ber of inputs has 5 available inputs (see Fig. 4a). In the
state space of the abstraction, many states exists for which
no input enforcing the specifications exists at all; however
these states are not part of DinitPZ and are never reached.
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(a) Phase portrait for full dynamics, (θ, θ̇), over eight steps.
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(b) The torques of all joints over two steps. The torque bounds
of ±8 are illustrated with horizontal red lines.
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(c) Phase portrait for the zero dynamics (z1, z2) over eight
steps. The reset set is represented by the left vertical line and
the guard set represented by the right vertical line.
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(d) The ZMP constraint function AZMPFst over two steps.
The upper bound of this constraint is equal to zero as illus-
trated by the horizontal red line.

Figure 3: Plots demonstrating the different specifications for the walking gait obtained from a constant v = v∗ as generated
in [18] (left figure in each subplot) and the state-dependent v(z) provided by the abstraction based controller (right figure in
each subplot).

Fig. 3a and Fig. 3c show eight steps of AMBER 2 in the
(θ, θ̇) plane, and in the (z1, z2) plane, respectively. For the
constant input v = v∗, the initial condition is chosen so that
the angles and zero dynamics evolve in a periodic manner.
Therefore, one cannot distinguish different steps. The tra-
jectory of AMBER 2 when controlled with the abstraction
based controller starts with the same initial conditions. We
see that it also converges after three steps to a periodic be-
havior. This happens even though we did not include this
requirement in the specifications. In Fig. 3c, we see that
due to the varying v, z2 changes much more in the case of
the abstraction based controller than in the case of constant
v = v∗. We also note that the constraint (C2) is satisfied
since the magnitude of the angular velocities never exceed
5 rad/s. Fig. 3b and Fig. 3d show the satisfaction of the
torque constraint and the ZMP constraint (C1) and (C3),
respectively. AMBER 2 with constant input v = v∗ is not
able to satisfy the ZMP constraint, and it even violates the
torque constraints at the end of the steps. The abstraction
based controller enforces these constraints even during the
inter sampling times. These simulation results indicate that
the abstraction based controller is able to generate a physi-
cally realizable stable walking gait.
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