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Abstract— Industrial robot manipulators are not able to 
match the precision and speed with which humans are able 
to execute contact rich tasks even to this day. Therefore, as a 
means to overcome this gap, we demonstrate generative methods 
for imitating a peg-in-hole insertion task in a 6-DOF robot 
manipulator. In particular, generative adversarial imitation 
learning (GAIL) is used to successfully achieve this task with a 6 
µm peg-hole clearance on the Yaskawa GP8 industrial robot. 
Experimental results show that the policy successfully learns 
within 20 episodes from a handful of human expert 
demonstrations on the robot (i.e., < 10 tele-operated robot 
demonstrations). The insertion time improves from > 20 seconds 
(which also includes failed insertions) to < 15 seconds, thereby 
validating the effectiveness of this approach.

Keywords-imitation learning; generative adversarial net-
works; peg-in-hole insertion

I. INTRODUCTION

High precision assembly tasks refer to the class of tasks 
where the position accuracy required far exceeds that of the 
robot manipulators. For example, the Yaskawa GP8 robot 
(shown in Fig. 1) has accuracy levels of 20 − 100 µm, whereas   
some  of   the   peg-in-hole   insertion   tasks  require accuracy 
levels of ≤ 10 µm. More importantly, these types of insertion 
tasks are contact-rich (as shown by Fig. 1),  thereby requiring 
limits on the maximum allowable forces exerted by the peg. 
Therefore, executing these types of tasks remain a challenge 
for traditional control schemes even to this day. 

Classical methods used for the peg-in-hole task involve the 
application of a transimpedance controller rather than a direct 
position or velocity control of the joint angles [1, Chapter 
8.8]. A transimpedance controller realizes active compliant 
behavior of the end-effector, thereby enabling peg-in-hole 
insertions despite the lack of positioning accuracy of the 
manipulators. It is important to note that the forces normal 
to the surface must be controlled to prevent any form of 
damage to the peg or the hole. However, even if the stiffness 
and damping parameters of the impedance controller are well 
tuned, the insertion times are high (> 20 seconds) for tight 
clearances (≤ 10 µm). This is in contrast to insertion times 
taken by human experts, which are < 5 seconds. Hence, the 
question that we would like to answer is, can we mimic this 
human expert policy in the robot via one of the well known 
imitation learning methods available in literature?

It is worth noting that modeling the contact is difficult,
but the policy employed by human experts to insert the peg

Figure 1. The Yaskawa GP8 robot is shown on the left, and the peg 
being inserted by this robot into a hole with a gap of 6 µm is shown on 

the right.

is seemingly simple. In imitation learning, a policy network 
is trained to copy the expert and take the same actions that 
the expert would have taken given the same observations 
[2], [3]. It is a robust skill acquisition method that has been 
successfully applied to autonomous driving [4] and complex 
manipulation tasks [5]. Therefore, the goal of the paper is to 
mimic an expert policy via imitation learning for the peg-in-
hole task.

Imitation learning requires expert data. In some domains, 
such as autonomous driving, the control interface makes 
this straight forward to procure. The observations from the 
camera and other sensors can be recorded along with the 
driver’s actions on the steering wheel, accelerator, and brake 
pedals. Expert data can also be collected for complex manip-
ulation tasks by teleoperating a robot with a VR controller 
[2]. For high precision assembly tasks, it is much harder to 
collect expert data. Although humans can reliably place a peg 
in a hole, it is difficult to capture the forces applied and the 
feedback forces received. Hence, we chose to gather useful 
expert data for the peg-in-hole task by teleoperation. Since 
the amount of expert data is limited in this context, the 
question we address in this work is: Can imitation learning 
succeed in copying an expert with a small set of 
demonstrations?

To address this issue, we first build a teleoperation system 
that uses a space mouse (see Fig. 5) to control a Yaskawa 
GP8 robot. The feedback forces received by the MotoFit 
force sensor are plotted on a display, and the expert can exert 
forces on the peg using the space mouse. The feedback forces 
and the applied forces are recorded as the expert performs 
the peg-in-hole task. The recorded data is used to train a 
neural network that takes the force feedback and the current 
position and produces the force to be applied. We specifically* Sagar and Shishir have contributed equally to this project.



Figure 2. Figure showing the GAIL framework used for the peg-in-hole task. 
The generator is denoted by G, and the discriminator is denoted by D, and 

the expert policy is denoted by πexpert.

use generative adversarial imitation learning (GAIL) [3] for 
learning the policy, which are known to be sample efficient. 
Pictorial representation of GAIL is provided in Fig. 2.

Our contributions are:
• We show that a neural network can be trained via

generative methods to copy the actions taken by a
human expert.

• We find that only a handful of expert trajectories (less
than ten) are sufficient for the peg-in-hole task to
achieve a high success rate.

The remainder of this paper is structured as follows. In
Section II, we discuss related work. Following this in Section
III, we describe the proposed architecture. Subsequently, we
present experimental results in Section IV and conclude this
paper with a short discussion in Section V.

II. RELATED WORK

Deep reinforcement learning (D-RL) has been used to 
learn controllers for a variety of tasks ranging from walking 
robots [6], [7], [8] to manipulating objects with an arm 
[9], [10], [11], [12], [13]. Hence reinforcement learning, 
indeed, offers a way to realize peg-in-hole tasks via random 
explorations, thereby eliminating the need to hand craft an 
effective control/policy without using any form of expert 
data. However, the remarkable success observed in D-RL 
cannot be translated directly to realize high precision as-
sembly tasks. One of the factors being the hard limit on 
the number of allowable training iterations in hardware. As 
the tasks become more complex, the training becomes more 
expensive. Sample efficiency of the learning algorithm is 
critical to directly deploy on real robots [14]. For example, 
in [15], the task of inserting the peg inside the hole defines 
a reward function and uses Q learning to arrive at a policy 
that, given the measured feedback forces, outputs the forces 
to be applied. The minimum number of episodes required for 
learning a stable policy for a peg-hole clearance of 10 µm

was 100. Therefore, with a view toward reducing the number 
of training episodes, the goal of this paper is to use imitation 
learning to copy the policy of human experts. We find that 
imitation is significantly more sample efficient; uses < 20 
episodes to fully learn the policy for pegs with tighter 
clearances i.e., 6 µm.

[16] proposed to use an analytical model of the contact
to develop better policies for the peg-in-hole insertion tasks.
The reactionary forces when a peg is pushed against the
hole at an arbitrary angle are recorded, and the model is
used to solve for the actual orientation of the peg. Once the
orientation is known, the peg is pushed in at the appropriate
angle. In our work, we assume the peg is aligned with the
hole within 2 degrees and obtain a policy that can push the
peg inside the hole and react appropriately if the peg is stuck
mid way through the hole. We do not attempt to model the
contact, so our method is model-free.

Visual imitation learning was proposed in [17], [2], [5],
[18] to copy an expert performing complex manipulation
tasks using a virtual reality controller. The tasks accom-
plished include inserting blocks into shape sorting cubes.
Although our work is superficially similar, there are several
differences. First, we do not use vision because we assume
that the peg is close to the hole at the starting position.
Second, our objective requires significantly higher precision
because the gap between the peg and the hole is only 6 µm.
This necessitates the use of impedance control using a force
sensor rather than position/velocity control.

III. PROPOSED ARCHITECTURE

In imitation learning, behavior cloning [2] and generative
adversarial imitation learning (GAIL) [3] are two approaches
to train a policy network. In behavior cloning, once the
dataset is collected, it is used to train a policy network
through supervised learning, and the robot does no further
exploration during learning. In GAIL the reward function is
inferred from expert data, and the inferred reward function is
used to train the controller. GAIL has the potential to enable
the robot to generalize better while using limited training data
by training the policy network with reinforcement learning
[3]. This is similar to inverse reinforcement learning where a
reward function is extracted from the expert data. However,
in GAIL, the reward function is never explicitly recovered
from the expert data. Instead, a discriminator network (Fig. 3)
is trained to distinguish between expert trajectories and
trajectories generated by the generator policy network (see
Fig. 2). The trained discriminator is then used as a reward
function to train the generator network (for example, with
PPO [19]) so as to confuse the discriminator. Thus, training
the generator and discriminator proceed alternately in GAIL,
and the generator improves over time. Neural network mod-
els for both the generator and discriminator are shown in
Figs. 4, 3. See [3] for more details for the detailed description
for the control algorithm for GAIL implemented in the robot.

After successful training, the generator network becomes
our policy network. The inputs to the policy network are:

• x, y, z positions of the peg: px, py , pz .



Figure 3. The discriminator network that takes (state, action) pairs as 
input and classifies if the pair comes from expert data or from the 

generator (policy) network.

• Roll, pitch and yaw positions of the peg: prx , pry , prz .
The output of the policy network determines if the peg

should apply a downward force, apply wiggle in every time
step. Therefore, the action (Ap) is a discrete variable, i.e.,
wiggle1 with a downward force, wiggle without a downward
force, apply a downward force without wiggle, and apply a
downward force with wiggle. Hence, there are four actions.
We will number the actions from 0 to 3 with each action
described as follows:

• 0: Downward force with wiggle
• 1: Downward force without wiggle
• 2: Wiggle without downward force
• 3: No wiggle and no downward force
The policy network is shown in Fig. 4. The first layer is

the LayerNorm normalization layer and is followed by a 1D
convolutional layer along the time axis which accepts the
state input from the last few time steps. This is followed by
a few densely connected layers to produce the discretized
target force outputs. There are two notable aspects to this
network:

• At the very beginning, the first layer is a normalization
layer with large epsilon. We explain below why this is
necessary.

• Even though stateful elements such as LSTM are not
used, the network is recurrent because the previous
outputs are included as inputs. This is needed to produce
output waveforms that look like, for example, a square
wave.

The layer normalization is defined to be the following:

LN(xi) =
xi −mean(xi, xi−1, . . . , xi−T+1)

ε+ std(xi, xi−1, . . . , xi−T+1)
, (1)

where the mean and std are over the time dimension. The
subscripts i, i − 1, . . .  are the time indices for states, with T
being the sample size. Subtraction of the mean is necessary 
because of the  large  range  of values  the  input  might  take.
For example, the position pz is fed in mm and can vary
from −170 mm to +300 mm depending on the height of the

1Here wiggle means random forces being applied along roll, pitch and
yaw directions.

Figure 4. The policy network (generator) that takes the current state 
(current force feedback and position) and outputs the actuator command 

(target forces) that are fed as input to the transimpedance controller.

Figure 5. The space mouse used by the human expert to guide the peg 
into the hole.

table, whereas the change in pz during insertion may only 
be 20 mm (i.e., the height of the hole). We also use a large
ε = 0.1 in order to suppress noise when one of the inputs is
mostly static and unchanging over time.

IV. RESULTS

With the network architecture described, we now discuss
the main results. The experiments were performed on a
Yaskawa GP8 robot with the MotoFit 6-axis force sensor.
We wrote a program for the YRC1000 controller using
the MotoPlus API in C that communicates with a PC via
UDP. The average round trip latency between the PC and
the YRC1000 controller was less than 1 ms. The neural
network was implemented using Keras on a Linux PC. The
sampling rate for collecting the sensor data and to update
the target force was 100 Hz. We assume that the position of
the hole relative to the base of the robot is known and the
peg is already positioned to be just above the hole (with an
error of +/ − 1 mm, and with a randomly chosen roll and
pitch angle (i.e., between −2 and +2 degree with respect to
the hole). Therefore, a camera is not necessary. However,
even if the peg is precisely placed above the hole, plain
insertion i.e., applying a downward force on the peg, is not
guaranteed to be successful every time. This is due to the
fact that the position accuracy of the robot is > 20 µm. The 
transimpedance controller serves as the low level controller 
that receives actuator commands from the policy network.



Figure 6. A sample episode where the expert guides the peg into the hole 
using the space mouse. The plots are described as follows (from top to 
bottom): force along x direction (ufx ), force along y direction (ufy ), 
force along z direction (ufz ), moment about x direction (ufrx ), moment 
about y direction (ufry ), moment about z direction (ufrz ), vertical 
position of peg pz, roll of peg rx, pitch of peg ry, force measured along x, 
force measured along y, force measured along z, moment measured about 
x, and moment measured about y.

A. Data collection

Collecting expert data proved to be a challenge. One
option was to detach the peg from the robot while leaving it
connected to the force sensor and to have the expert insert
it in the hole. The problem with this approach is that it is
difficult to measure what forces the expert is applying on the
peg. Instead we chose to display the force sensor readings
along with the position of the peg on a screen and to have
the expert apply a force on the peg using a space mouse
(Fig. 5). The lack of haptic feedback is a major drawback
of this approach. Nevertheless, the experts were successful
in inserting the peg.

Fig. 5 shows the expert operating the space mouse to 
guide the peg into the hole. A constant downward force 
is applied during insertion. The expert can apply forces in 
the X and Y direction using the space mouse. Although a 
torque in Rz can be applied, none of the experts did so. A 
sample episode where the expert successfully inserts the peg 
is shown in Fig. 6. We collected 8 such episodes for training.

B. GAIL Training

Roughly 500 samples from the MotoFit algorithm were 
used for Generator. Discriminators are trained with cross-
entropy loss, and the generators are trained with the PPO loss

[19]. After every episode equal number of samples are 
chosen both from the generated and expert data, and the 
discriminator is trained for about 100 − 500 iterations. 
Similarly, after every episode, the discriminator is evaluated 
for the samples and used as reward for the generator. With 
these rewards, the generator is trained via PPO. It is worth 
noting that the frequency of update for the generator is much 
higher than that of the discriminator. This is due to the fact 
that the discriminator tends to learn faster than the 
generator. The above training framework is run for about 20 
episodes in the robot, and the results are obtained. Fig. 7 
shows the trajectories of vertical position, roll and pitch 
angles of the peg during some of the training episodes. It can 
be verified that the “wiggle” mode with a downward force is 
turned on whenever the peg is stuck.

Figs. 8 show the generator reward and the discriminator 
loss as a function of the episodes. It is worth noting that the 
generator and discriminator are playing a game, and there 
is no termination condition. Both the losses must stabilize 
to a constant value (or oscillates), which are nonzero. Fig. 
9 shows the comparison between the untrained and trained 
networks. As shown by Fig. 9, the action values applied 
before training are arbitrary, and those applied after training 
are more meaningful. It can be verified that the insertion time 
is also improved (from Fig. 8) after about eight episodes. A 
video demonstrating the training of peg-in-hole is provided in 
this link: https://youtu.be/ztyt94rsG5s.

V. CONCLUSION

We showed that high precision assembly tasks such as 
peg-in-hole insertions with small clearances can be trained 
using imitation learning. Imitation learning is more sample 
efficient t han r einforcement l earning a nd d oes n ot require 
reward shaping. We used generative methods for imitating 
the expert policy. However, it is worth noting that gathering 
expert data for such tasks still remains a challenge. Future 
work will involve using better data collection techniques and 
performing imitation learning on a wider array of tasks.
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Figure 7. Position of the peg pz, roll of the peg prx , and pitch angle of the peg pry are given here for 5 episodes (randomly chosen from the 20). It can be 
verified that the initial pose varies from −2 to 2 degrees.
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Figure 8. Figures showing the generator reward and the discriminator loss and the mean insertion time (averaged over 5 consecutive episodes) 
for twenty episodes. The generator reward oscillates, while the discriminator loss stabilizes after approximately ten episodes. More importantly, 

the mean insertion time is decreasing over time.
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