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ABSTRACT
This paper presents a methodology for achieving efficient
multi-domain underactuated bipedal walking on compliant
robots by formally emulating gaits produced by the Spring
Loaded Inverted Pendulum (SLIP). With the goal of achiev-
ing locomotion that displays phases of double and single sup-
port, a hybrid system model is formulated that faithfully
represents the full-order dynamics of a compliant walking
robot. The SLIP model is used as a basis for constructing
human-inspired controllers that yield a dimension reduction
through the use of hybrid zero dynamics. This allows for
the formulation of an optimization problem that produces
hybrid zero dynamics that best represents a SLIP model
walking gait, while simultaneously ensuring the proper re-
duction in dimensionality that can be utilized to produce
stable periodic orbits, i.e., walking gaits. The end result is
stable robotic walking in simulation and, when implemented
on the compliant robot ATRIAS, experimentally realized dy-
namic multi-domain locomotion.
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J.2 [Physical Sciences and Engineering]: [engineering,
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Figure 1: Figure showing front view of ATRIAS. Its mo-
tion is constrained to the sagittal plane through a boom
connected to its torso.

1. INTRODUCTION
Humans are able to walk with exceptional ease and effi-

ciency. It is postulated that this is due to two major factors:
the presence of elasticity in their joints [20], and a mass dis-
tribution aimed at conservation of energy [16]. In the case
of the former, elasticity allows energy that would otherwise
be lost to be stored and used later to replace actuator work.
For example, humans handle impacts during a foot strike
by storing the kinetic energy rather than dissipating it, then
converting the stored energy back to kinetic energy before
the end of the step. In fact, [11] shows that the efficiency
increases steadily when the positive work is mainly derived
from the passive recoil of muscle elastic elements and to a
lesser extent from the active shortening of the contractile
machinery. In the latter, the mass distribution of humans
allows them to be likened to an inverted pendulum model
which can swing forward with constant energy; human walk-
ing is therefore analogous to the motion of coupled pendula,
where the stance leg behaves like an inverted pendulum mov-
ing about the stance foot, and the swing leg like a regular



pendulum swinging about the hip. This points to reduced
models of human locomotion centered around inverted com-
pliant pendula.

Reduced order dynamic models have long been used in
biomechanics and robotics to encapsulate the most impor-
tant dynamic properties of complex systems [12, 17, 21].
The Spring Loaded Inverted Pendulum (SLIP), based upon
the concept of coupled compliant pendula, is one such low-
dimensional model that has been shown to approximate ani-
mal walking and running behaviors in everything from cock-
roaches, to quail, to kangaroos [9], to humans [8]. ATRIAS,
shown in Fig. 1, is a 5-DOF under-actuated robot with se-
ries compliance specifically constructed so as to capture the
essential elements of the SLIP model and thereby allow for
the realization of efficient and natural locomotion on bipedal
robots.

The goal of this paper is to provide a formal framework
in which to realize SLIP inspired walking gaits on bipedal
robots, and realize these formally-generated gaits experi-
mentally to achieve natural locomotion. With this goal
in mind, we begin by considering a hybrid system model
of ATRIAS. Since it has been shown that humans display
multiple discrete phases of walking consisting of double and
single support [10, 6], we construct a multi-domain hybrid
system model capturing these different phases of walking.
In order to achieve the dimensionality reduction enjoyed by
the SLIP model, we utilize human-inspired control [4, 3] to
construct virtual constraints that project the full-order dy-
namics of the system to a reduced order model expressed via
multi-domain hybrid zero dynamics [18, 22, 23]. A formal
result establishes that stable periodic orbits, i.e., walking
gaits, for the reduced dynamics imply stable periodic orbits
for the full-order dynamics. This observation is utilized in
the construction of a SLIP inspired optimization; in partic-
ular, walking gaits generated for the SLIP model are used
as the cost in an optimization aimed at achieving hybrid
invariance of the reduced order dynamics. Novel construc-
tions are utilized to both make this problem computationally
tractable and to allow for the inclusion of constraints that
will ensure the physical realizability of the resulting walking
gaits.

The SLIP-inspired methodology for generating dynamic
multi-domain gaits on compliant bipedal robots is applied
to ATRIAS both in simulation and experiment. The behav-
ior of the gait is compared against the SLIP walking gait
from which it was obtained, and the methods for translating
the theoretic constructions to hardware are outlined. The
end result is the experimental implementation on ATRIAS
and successful demonstration of dynamic multi-domain lo-
comotion. Moreover, the locomotion is remarkably natural
looking.

2. MULTI-DOMAIN HYBRID SYSTEM
This section describes the hybrid model of the bipedal

robot ATRIAS in detail. ATRIAS (Assume The Robot
Is A Sphere) is a 3D capable, human-scale, bipedal robot
conceived and implemented at the Oregon State University
Dynamic Robotics Laboratory. Designed to match key char-
acteristics of the SLIP model, ATRIAS uses large springs in
series with actuators to drive lightweight four bar mecha-
nisms on each leg which terminate in point feet. This en-
ables ATRIAS to achieve agile, efficient and highly dynamic
maneuvers. For the current work, a support boom is used
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Figure 2: The coordinate configuration of the robot.

to constrain torso rotation and translation to the sagittal
plane, effectively planarizing the dynamics. A more detailed
description of the robot is presented in [14]. Fig. 1 illustrates
the experimental setup.

Robot Configuration. For the 2D model of ATRIAS, we
will consider the generalized coordinates of the robot due
to the multi-domain structure of the hybrid system. That
is, the stance toe position {px, pz} and torso pitch angle
θT of the body fixed frame with respect to world inertia
frame will be introduced as the extended coordinates of the
robot. By the nature of the parallelogram of four link bars,
only two coordinates are needed to characterize each leg,
as shown in Fig. 2, where {θ1s, θ2s} are the angles of the
upper two bars of stance leg, {θ1ns, θ2ns} are the angles of
upper two bars of the non-stance leg with respect to the
torso, respectively. Since the motors are connected to legs
through springs to introduce compliance, additional coordi-
nates are introduced to model the dynamics of the motors,
i.e., θm = {θm1s, θm2s, θm1ns, θm2ns} are the corresponding
angles of motor outputs, measured in the same coordinates
of the respective joint angles, where θi equals θmi when there
is no spring deflection, with i ∈ {1s, 2s, 1ns, 2ns}. Therefore
the following configuration space Q is given in the general-
ized coordinates:

θe = {px, pz, θT , θb, θm}T , (1)

where θb = {θ1s, θ2s, θ1ns, θ2ns} are the rigid body coordi-
nates. When there is an impact the legs need to be switched
accordingly, which is done by using the reset map.

Hybrid System Model. Having described the basics of
the hardware setup, the mathematical model of multi-domain
walking for this bipedal robot can thus be designed using
the framework of hybrid systems [6]. For this paper, we are
concerned with a bipedal walking gait consisting of a single
and a double support phase (see Fig. 3). The formal hybrid
model for the two-domain locomotion is given by the tuple:

H CA = (ΓA,DA,UA, SA,∆A,FGA), (2)

where
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Figure 3: The directed graph of single/double support
phase.

• ΓA = (VA, EA) is the directed graph specific to this
hybrid system, with vertices VA = {ss,ds}, where ss
and ds represent single and double support phases,
respectively, and edges EA = {e1 = {ss→ ds}, e2 =
{ds→ ss}},

• DA = {Dss,Dds} is a set of two domains,

• UA = {Uss,Uds} is a set of admissible controls,

• SA = {Sss→ds, Sds→ss} is a set of guards,

• ∆A = {∆ss→ds,∆ds→ss} is a set of reset maps, and
finally

• FGA = {(fss, gss), (fds, gds)} is a control system on
each Dv for v ∈ VA.

The two domains {Dss,Dds} are depicted in the Fig. 3. The
robot is in the double support phase when both legs are in
contact with the ground and transitions to single support
phase when one of the legs lifts off the ground. The remain-
der of this section will be focused on how to construct the
individual elements of the two-domain hybrid system con-
sidered.

Single Support. In the single support case, the non-stance
foot is above the ground. When the non-stance foot strikes
the ground, a guard is reached and the transition to the next
domain takes place. This implies that the single support
domain has the following structure:

Dss = {(θe, θ̇e, u) : hns(θe) ≥ 0, F zns(θe, θ̇e, u) = 0}, (3)

where F zns(θe, θ̇e, u) is the normal force acting on the non-
stance foot (as will be formally defined later) and hns(θe)
is the height of the non-stance foot. Similarly, the guard is
given by:

Sss→ds = {(θe, θ̇e) : hns(θe) = 0, ḣns(θe, θ̇e) < 0}. (4)

Impacts happens when the non-stance foot hits the ground.
The discrete dynamics of the impact of system with com-
pliance can be computed [15, 22] by assuming a perfectly
plastic impact of the rigid dynamics and state continuity
in the motor positions and velocities [18]; the post-impact
states, computed in terms of pre-impact states, is given by:

∆ss→ds(θe, θ̇e) =

[
R∆θeθe
R∆θ̇e

(θe)θ̇e

]
, (5)

where R is the relabeling matrix required to switch the
stance and non-stance legs.

The control system (fss, gss) can be obtained from the La-
grangian dynamics of a n-DOF robot. Using the coordinates
θ = (px, pz, θT , θb), we have [18]:

D(θ)θ̈ +H(θ, θ̇) = Bspτsp(θb, θm, θ̇b, θ̇m) + JTs (θ)Fs, (6)

Jmθ̈m = −τsp(θb, θm, θ̇b, θ̇m) +Bmu, (7)

where D(θ) and H(θ, θ̇) are obtained from the dynamics of
the rigid body system without series compliant actuators,
Jm is the motor inertia, u ∈ U are the motor control inputs,
Bm ∈ R4×4 is the motor torques distribution matrix, Js(θ)
is the Jacobian of the holonomic constraint defined by the
height of the stance foot and Fs is the vector of reaction
forces acting on the stance foot such that the acceleration
of the stance foot is zero and can be computed in terms of
state variables and control inputs [13]. Also, Bsp ∈ R7×4 is
the spring force distribution matrix,

Bsp =

[
03×4

I4×4

]
, (8)

and τsp(θb, θm, θ̇b, θ̇m) is the vector of spring forces. For
series springs, it can be computed by,

τsp(θb, θm, θ̇b, θ̇m) = b(θ̇m − θ̇b) + k(θm − θb), (9)

where k ∈ R4×4 and b ∈ R4×4 are the identified matrices
of spring constants and damping coefficients for each spring.
Then (6) - (9) can be combined together to give the following
control system:[

D 0
0 Jm

]
︸ ︷︷ ︸

De

θ̈e +

[
H
0

]
︸ ︷︷ ︸
He

+κ =

[
0
Bm

]
︸ ︷︷ ︸

Be

u+ JTesFs, (10)

where

κ =

 03×4 03×4

k −k
−k k

[ θb
θm

]
+

 03×4 03×4

b −b
−b b

[ θ̇b
θ̇m

]
,

(11)

and Jes(θe) = [Js(θ) 0].
Having obtained the equations of motion, the control sys-

tem formed by (fss, gss) is given by:

fss =

[
θ̇e

D−1
e (−κ−He + JTesFs)

]
, gss =

[
0

D−1
e Be

]
.

(12)

Double Support. In the double support case, the non-
stance foot must remain on the ground. Therefore, the dou-
ble support domain is given by:

Dds = {(θe, θ̇e, u) : hns(θe) = 0, F zns(θe, θ̇e, u) ≥ 0}, (13)

where F zns is the normal contact force on the nonstance foot.
Since the transition from double support to single support
occurs when the normal reaction force on the nonstance foot
crosses zero, the guard is given by:

Sds→ss = {(θe, θ̇e, u) : hns(θe) = 0, F zns(θe, θ̇e, u) = 0}.
(14)

For the transition from double support to single support,
since there are no impacts involved, the states of the robot
remain the same. Therefore the reset map from double sup-
port to single support is an identity map: ∆ds→ss = I.



The control system for the double support will be similar
to (10) but with an added constraint on the non-stance foot.
This constraint will enforce the non-stance foot to remain on
the ground. With this equation, (10) can be modified for the
double support case in the following manner:

Deθ̈e +He + κ = Beu+ JTes(θe)Fs + JTens(θe)Fns, (15)

where Jens(θe) = [Jns(θ) 0] with Jns(θ) is the Jacobian of
the x and y position of the non-stance foot. Accordingly,
Fns is the vector of reaction forces acting on the non-stance
foot such that the acceleration of the non-stance foot is zero.
Moreover Fns = [F xns, F

z
ns]

T , where F xns is due to the fric-
tional force in the horizontal direction, and F zns is the normal
force in the vertical direction which is also used in defining
Dss,Dds.

Having obtained the equations of motion, the control sys-
tem formed by (fds, gds) is given by:

fds =

[
θ̇e

D−1
e (−κ−He + JTesFs + JTensFns)

]
, gds = gss.

(16)

3. CONTROLLER DESIGN
This section will describe the methods used to determine

the required control input to achieve sustainable and robust
multi-domain bipedal walking for the given hybrid system.
Previous experimental results have yielded single domain
locomotion for robots without series elastic actuators [24,
4] through the successful implementation of human-inspired
control. A similar approach will be employed here to achieve
two-domain walking on ATRIAS. We begin by selecting a
walking gait using the ideal SLIP model. Motivated by this
gait, human-inspired control is implemented by picking out-
puts that elucidate the underlying walking structure through
the low-dimensional representation, or “virtual model.” It
is important to note that emulating a SLIP walking gait
through the use of outputs will not necessarily result in a
viable walking gait due to the hybrid nature of the system;
this will be addressed in detail in the following paragraphs.
Nevertheless, combining SLIP walking as a guide for gait
generation with formal guarantees on the existence of a sta-
ble walking gait will ideally result in more human-like loco-
motion.

SLIP Model. The spring-mass model consists of a point
mass m supported by massless spring legs with fixed rest
length l0 and spring constant k. The springs only act on
the mass while in contact with the ground and cannot apply
forces during swing. For walking, the hybrid dynamic phases
are limited to single support and double support. During
double support, the system remains entirely passive with
takeoff and transition to single support triggered by zero
spring force. During single support, the only control input
is the swing leg angle α with touchdown and the switch to
double support triggered by the swing leg toe touching the
ground. Because the dynamics are almost entirely passive
and the only control input is the angle of a massless leg,
SLIP model gaits require zero net actuator work.

Walking gaits are generated by selecting a fixed swing
leg angle that results in an equilibrium gait, that is, a gait
where each step’s initial conditions match its final condi-
tions. Given a desired average walking speed and a set of
model parameters, a non-linear equation solver is used to
find all possible equilibrium gaits. Of these gaits, only one
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Figure 4: The top plots depict a symmetric SLIP model gait
while the bottom plots depict an asymmetric gait. The left
plots illustrate the center of mass trajectory and moments of
touchdown and takeoff. The plots on the right show the ver-
tical ground reaction force with double support highlighted
in grey.

will have a symmetric vertical ground force reaction while
the others will be asymmetric. We choose to use this single
symmetric gait as it has lower peak forces and a more fluid
center of mass trajectory as shown in Fig. 4.

For the purposes of this work we use model parameters
that roughly approximate the low-dimensional dynamics of
ATRIAS, including the nonlinear spring constant resulting
from the four-bar linkage. Doing so enables us to generate
relevant center of mass trajectories that take full advantage
of the passive dynamics.

Output Definition. As discussed above, the center of
mass trajectories are the natural choice to represent the re-
duced order model. However, for the full-order robotic sys-
tem, the complex nonlinear expression representing center
of mass position will significantly increase the tracking dif-
ficulty. Instead, we consider a linear combination of state
variables that also capable of approximately characterizing
the simple SLIP model dynamics. In particular, the follow-
ing collection of outputs, first proposed in Eq. (14) of [19],
yield such a representation:

• Virtual stance leg angle: θsl :=
(
θm2s+θm1s

2

)
,

• Virtual non-stance leg angle: θnsl :=
(
θm2ns+θm1ns

2

)
,

• Stance knee angle: θsk := (θm2s − θm1s),

• Non-stance knee angle: θnsk := (θm2ns − θm1ns),

where the virtual leg angles characterize the forward motion
of the legs and the knee angles determine the corresponding
leg lengths. Note that we use motor angles instead of joint
angles due to the following considerations: (1) motor angles
are directly controlled, therefore we can track them more



precisely, and (2) assuming small spring deflections, motor
angles are a good approximation of joint angles which are
used to compute center of mass position in the optimization
discussed in Sect. 4. The end result is a set of relative degree
two outputs for which the corresponding feedback control
law is implemented by using input/output linearization.

Canonical Walking Function. The observation that hu-
mans and other animals act according to low-dimensional
representations during locomotion [2] led to the introduc-
tion of the canonical walking function. Defined to be the
time solution to a mass-spring-damper system, the canoni-
cal walking function is then defined as the linear mass spring
damper systems in general mechanical systems:

yH(t, α) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5. (17)

This becomes apparent by noting that α1 = c0, α2 = ωd,
α3 = c1, α4 = ζωn and α5 = g, where ζ is the damping
ratio, ωn is the natural frequency, ωd = ωn

√
1− ζ2 is the

damped natural frequency, c0 and c1 are determined by the
initial conditions of the system, and g is a gravity related
constant.

The canonical walking function is used as the desired tra-
jectories of the previously defined outputs.

Parameterization of Time. Autonomous control has
several advantages in regard to bipedal robots, the details
of which can be found in [7]. Considering this, we introduce
a state-based parameterization of time in our system; this is
a common practice in [23, 22]. It was observed that the hip
position of the SLIP model was monotonously increasing in
time. Therefore, the desired outputs’s time parameter can
be effectively replaced with the robot hip position, yielding
the following parameterization of time:

τ(θe) =
δphip(θe)− δphip(θ−e )

δphip(θ+e )− δphip(θ−e )
, (18)

where δphip(θ−e ) is the forward hip position of the robot at
the end of the current step in single support phase, δphip(θ+)
is the hip position of the robot at the beginning of the step,
with the linearized forward hip position, δphip(θe), given by:

δphip(θe) = π − (L2 + L4)θT − L2θ1s − L4θ2s, (19)

where L2 and L4 are the lengths of the lower-leg and thigh
respectively.

Control Law Construction. Due to the presence of elas-
ticity in ATRIAS, the robot is under-actuated in both single
support and double support phase. Thus we can define the
same combination of outputs for both domains. We define
the outputs (of relative degree two), as:

y(θe) = ya(θe)− yd(τi(θe), α), (20)

where ya and yd are the relative degree two actual outputs
and desired outputs, respectively, given by:

ya(θe) =


θsl(θe)
θnsl(θe)
θsk(θe)
θnsk(θe)

 , yd(τ, α) =


yH(τ, αsl)
yH(τ, αnsl)
yH(τ, αsk)
yH(τ, αnsk)

 . (21)

Importantly, because the parameters for each output are ex-
actly the same on both single support and double support
domain, the corresponding controller can easily be imple-
mented on the real robot. In particular, the controllers for

the affine control system with relative degree two outputs
are defined specifically for each domain:

u(α,ε)
v (θe, θ̇e) = (22)

−A−1
v (θe, θ̇e)

(
L2
fvy(θe, θ̇e) + 2εLfvy(θe, θ̇e) + ε2y(θe)

)
,

with Av(θe, θ̇e) = LgvLfvy(θe, θ̇e) the decoupling matrix for
v ∈ {ss,ds}. Again, the choice of outputs implies that this
matrix is nonsingular.

Hybrid System. With these feedback controllers intro-
duced for both phases, we obtain a hybrid system:

H (α,ε)
A = (ΓA,DA, SA,∆A, FA), (23)

where ΓA, DA, SA and ∆A are as in (2). Also, FA =

{f (α,ε)
ss , f

(α,ε)
ds } is the set of feedback vector fields where:

f (α,ε)
ss (θe, θ̇e) = fss(θe, θ̇e) + gss(θe, θ̇e)u

(α,ε)
ss (θe, θ̇e), (24)

f
(α,ε)
ds (θe, θ̇e) = fds(θe, θ̇e) + gds(θe, θ̇e)u

(α,ε)
ds (θe, θ̇e). (25)

Clearly, each individual vector field depends on ε and the
parameters for their respective domains, α. The goal of
SLIP inspired optimization is to design the parameters α
such that the hybrid system H(α,ε) has a stable periodic
orbit, i.e., a stable walking gait, for sufficiently large ε.

Zero Dynamics. The goal of the feedback control law
in (22) is to drive the outputs y(θe) → 0 exponentially. In
other words, the controller drives the system dynamics to a
parameterized smooth surface, termed as the zero dynamics
surface [3], with exponential stability. Now we will define
them specifically for each domain. First, we consider the
single support domain; when we consider the generalized
coordinates θe, the zero dynamics surface is defined as:

Zss,α = {(θe, θ̇e) ∈ Dss :y(θe) = 0, Lfssy(θe, θ̇e) = 0}, (26)

where 0 is a vector of zeros. Note that we make the depen-
dence of the zero dynamics surface on the set of domains
explicit. Similarly, for the double support domain, we have:

Zds,α = {(θe, θ̇e) ∈ Dds :y(θe) = 0, Lfdsy(θe, θ̇e) = 0}.
(27)

With the invertible decoupling matrix due to the proper
choice of the outputs, the feedback control law in (22) re-
stricts the dynamics to the zero dynamics surface. Pick
θz = {px, pz, θT , θb} with

θz = [I7×7 07×4] θe := Hzθe. (28)

Define xz := (θz, θ̇z) ∈ Zv,α, the unactuated states in the
Lagrangian model (10), wherein θz constitutes a set of lo-
cal coordinates for Zv,α, where v ∈ {ss,ds}. In particular,
we can write the equation of the zero dynamics for a given
domain Dv as

ẋz = qv(xz, α) (29)

for a proper selection of outputs and parametrized time de-
fined in Sect. 3, and ground reaction forces computed from
the state variables. That being said, the zero dynamics sur-
face only depends on the parameter set of the feedback con-
trol law. In fact, we can reconstruct actuated states of the
system in the terms of (θz, θ̇z) and parameters α when it is
on the zero dynamics surface.

With this notation in mind, we can now derive the equa-
tion of zero dynamics, independent of the control input.



First, we consider the case of single support domain. From
the continuous dynamics equation (10), we can write the
unactuated component as,

D(θz)θ̈z +H(θz, θ̇z) + κz(θe, θ̇e) = Jes(θz)
TFs, (30)

where, κz(θe, θ̇e) is the upper 7 rows of the κ in (11). It will

be seen from (42) and (43) that, (θm, θ̇m) in the expression
of κ are a function of parameter α and linearized hip posi-
tion, which actually only depends on the robots unactuated
states. Therefore, we can write that,

κz(θe, θ̇e) = κz(θz, θ̇z, α).

To fully determine the zero dynamics, the holomonic con-
straints are differentiated twice and set equal to zero:

∂Jes(θz)θ̇z
∂t

= Jes(θz)θ̈z + J̇es(θz, θ̇z)θ̇z = 0. (31)

Solving (30) and (31) simultaneously for Fs yields,

Fs(θz, θ̇z) = (Jes(θz)D(θz)
−1Jes(θz)

T )−1(−J̇es(θz, θ̇z)θ̇z+

Jes(θz)D(θz)
−1(H(θz, θ̇z) + κz(θz, θ̇z.α))) (32)

By substituting (32) into (30), we have the zero dynamics
equation of single support domain in the form of (29) with,

qss(xz, α) =

[
θ̇z

D−1(−κ−H + JTesFs)

]
. (33)

Similarly for the double support domain, the following
equation holds,

qds(xz, α) =

[
θ̇z

D−1(−κ−H + JTesFs + JTensFns)

]
. (34)

where [Fs Fns]
T can be obtained analogously from (32) by

replacing Jes by [Jes Jens].

Main observation. The advantage of zero dynamics is
that, instead of full-order dynamics, the low dimensional
zero dynamics can be used in the optimization problem in-
troduced in next section if the zero dynamics are invariant
through the impacts of the system. In particular, the hybrid

system H (α,ε)
A in (23) obtained by applying human-inspired

control to the hybrid control system H CA in (2) has hybrid
zero dynamics if:

∆ss→ds(Sss→ds ∩ Zss,α) ⊂ Zds,α, (HZD1)

∆ds→ss(Sds→ss ∩ Zds,α) ⊂ Zss,α. (HZD2)

The result of hybrid zero dynamics is a stable periodic multi-
domain walking gait for the full order system given a stable
limit cycle in the (hybrid) zero dynamics. This can be for-
mally summarized as follows:

Theorem 1. If the hybrid system H (α,ε)
A in (23) satisfies

(HZD1) and if OZ ⊂ Zds ∪ Zss is an exponentially stable
periodic orbit for the zero dynamics in (29), then there exists
ε > 0, such that O = ι0(OZ) is an exponentially stable
periodic orbit of the full order system, where ι0 : Zds∪Zss →
Dss ∪ Dds is the canonical embedding.

Space constraints do not allow for a proof of this result,
but it essentially follows in a straightforward manner from
the results of [5] coupled with the fact that ∆ds→ss = I.
This is why only (HZD1) is required and why, in the future,
this condition will be denoted by simply (HZD).

4. OPTIMIZATION
In this section, we will discuss the process of obtaining

control parameters and an initial condition on the zero dy-
namics that result in hybrid zero dynamics (HZD) while pro-
ducing outputs that are as close as possible to those of the
SLIP model. More formally, an optimization problem is con-
structed to solve for parameters of the human-inspired con-
troller α, and a fixed point (θ−z , θ̇

−
z ) that guarantees HZD

while simultaneously generating a stable walking gait.

SLIP Inspired Optimization. This section utilizes the
fact that the zero dynamic surfaces in (26) and (27) are in-
variant under the flow of closed-loop continuous dynamics,
while it is not necessarily invariant for the discrete dynam-
ics. In particular, the invariance of the zero dynamics will
be disturbed at the discrete impacts that occur as a result of
contact points changing. For the hybrid system of (2), the
only impact occurs when the robot transitions from the sin-
gle support domain to the double support domain. The goal
of this paper is to find a parameter set α∗, which guarantees
hybrid invariance of the hybrid system of (2) while track-
ing the center of mass (CoM) trajectory of the SLIP model
as close as possible. In particular, we construct the follow-
ing constrained optimization problem, called SLIP Inspired
Optimization:

α∗ = argmin
α∈R4×5

CostSLIP(α) (35)

s.t ∆ss→ds(Sss→ds ∩ Zss,α) ⊂ Zds,α, (HZD)

with the SLIP-model-based cost function defined as:

CostSLIP(α) = (36)

K∑
k=1

∑
i∈{x,z}

(
pScom,i[k]− pcom,i

(
yH(tS [k], α)

))2
,

where discrete times, tS [k], and discrete values of the CoM
position for the SLIP gait, pScom,i[k], for i ∈ {x, z} ob-
tained from the SLIP walking gait found in Fig. 3, and
pcom

(
yH(tS [k], α)

)
is the approximate center of mass po-

sition of the robot computed from the outputs characterized
by the canonical walking function. The end result is the
least square fit of the CoM trajectory of the robot to that of
SLIP model. In other words, we seek to ”shape” the dynam-
ics of the robot as close to SLIP model dynamics as possible.
The formal goal of this section is to reframe the constraints
of (HZD) in a way that it can be practically solvable.

Hybrid Zero Dynamics As discussed in previous section,
a hybrid system has hybrid zero dynamics (HZD) if the zero
dynamics are invariant through the impact. For a rigid body
system, the pre-impact states can be explicitly solved for in
terms of the parameter α [2]. However, because the sys-
tem being considered has series elastic actuators, it is not
possible to solve explicitly due to high dimensions of zero
dynamics surface of the system. The difficulty comes from
the fact that the pre-impact states of the zero dynamics co-
ordinates (θ−z , θ̇

−
z ) ∈ Sss→ds ∩ Zss,α need to be solved by

integrating the dynamics defined in (29).

We assume that a set of points (θ−z , θ̇
−
z ) are the local co-

ordinates of the zero dynamics on the guard. Due to the
fact that the guard function hns(θe) only depends on the
rigid body configurations, which is the same as hns(θz) in



this case, the following constraints need to be satisfied:

hns(θ
−
z , θ̇

−
z ) = 0, (C1)

dhns(θ
−
z )θ̇−z < 0. (C2)

Now we expand our parameter set by defining,

β := {α, θ−z , θ̇−z }.

The advantage of this definition is that we can solve the pre-
impact states explicitly in the terms of β, and simplify the
constraints to the same form as in [2]. A point (ϑ(β), ϑ̇(β)) ∈
Sss→ds ∩ Zss,α that depends on these parameters can be
obtained by solving the equations:

ϑ(β) := θe s.t. y(R∆θeθe) = 04 (37)

ϑ̇(β) = Y −1(ϑ(β))

[
θ̇−z
04

]
, (38)

where R is the relabeling matrix and,

Y (ϑ(β)) =

[
Hz

dy(ϑ(β))

]
where Hz is defined in (28) such that θz = Hzθe. The
equation (37) is easy to solve by the fact that θ+e = R∆θeθe
and τ(R∆θeθe) = 0 implying that: y(θ+e ) = ya(θ+e )− yd(0).
With the proper choice of the outputs, the matrix Y (ϑ(β))
is invertible. Thus the (HZD) of the system can be stated
as,

y(ϑ(β)) = 0, (C3)

dy (R∆θeϑ(β))R∆θ̇e
(ϑ(β))ϑ̇(β) = 0, (C4)

which guarantee the hybrid invariance of the system through
impacts [2].

Physical Constraints. To achieve a physically permis-
sible walking gait, several constraints are imposed on the
optimization. The computations of the physical constraints
are performed by integrating the zero dynamics of (29) over
both double support and single support domains with the
initial condition ∆ss→ds(ϑ(β), ϑ̇(β)). Those constraints are
shown as follows:

Ground Reaction Forces: For the double support domain, the
normal ground reaction forces on non-stance foot should
be positive to prevent the reaction force from “pulling” the
robot against the ground, i.e.,

F zns(θz, θ̇z, α) > 0, (θz, θ̇z) ∈ Dds. (C5)

For the single support domain, the normal ground reaction
forces on stance foot should be positive, otherwise the robot
will leave the ground and enter the flight phase, which is not
in the scope of this paper. Therefore, we require that:

F zs (θz, θ̇z, α) > 0, (θz, θ̇z) ∈ Dss. (C6)

The ground reaction forces can be computed by (32).

Friction: To prevent the stance foot from sliding, the follow-
ing constraint is imposed:

F xs (θz, θ̇z, α) < µF zs (θz, θ̇z, α), (C7)

where µ is the coefficient of static friction for the contact
between stance foot and the ground.

Foot Clearance: From the definition of the Dss, the height
of the non-stance foot needs to be above the ground during

the single support domain. The constraint can be expressed
as

hns(θz) > 0, (θz, θ̇z) ∈ Dss. (C8)

Touch Down Angle: To achieve stable walking with the ideal
SLIP model discussed in Fig. 3, it requires that the touch
down angle, or the angle of attack, denoted as θt, needs to
be a certain value, θT D, determined from the optimal SLIP
gait. With the goal of matching the SLIP model dynamics
as close as possible, we impose a constraint that the touch
down angle of the robot, which is a function of post impact
state ϑ(β) in (37), equals the desired value of the stable
SLIP walking gait:

θt(ϑ(β)) = θT D. (C9)

We now have the necessary framework in which to restate
the SLIP Inspired Optimization problem for multi-domain
walking:

β∗ = argmin
β∈R4×5×TQz

CostSLIP(β) (39)

s.t (C1)− (C9). (C)

where Qz ⊂ Q is the configuration space of the zero dynam-
ics coordinates θz. The end result is a stable multi-domain
walking gait with β = (α, θ−z , θ̇

−
z ) consists of the parameters

of the human walking function α, and the pre-impact states
(θ−z , θ̇

−
z ) of the zero dynamics. The stability of the gait is

validated numerically through the use of the Poincaré map
only for the zero dynamics.

Taking Sss→ds as the Poincaré section, define the Poincaré
map P ε : Sss→ds → Sss→ds which is a partial function:

P ε(θz, θ̇z) = φss
Tss(θz ,θ̇z)

(∆ss→ss(θ
−
z , θ̇

−
z )), (40)

with ∆ss→ss(θ
−
z , θ̇

−
z ) defined as,

∆ss→ss(θ
−
z , θ̇

−
z ) = ∆ds→ss(φ

ds
Tds(θz ,θ̇z)

(∆ss→ds(θ
−
z , θ̇

−
z )))

where, for v ∈ {ss,ds}, φv is the flow generated by the zero

dynamics vector field q
(α,ε)
v and Tv(θz, θ̇z) is the time-to-

impact function determined by the first time the flow inter-
sects with the corresponding guard, respectively.

The point (θ−z , θ̇
−
z ) on Sss→ds is a fixed point of P ε if

and only if (θ−z , θ̇
−
z ) = P ε(θ−z , θ̇

−
z ). Moreover, if P ε is ex-

ponentially stable with a sufficiently large gain ε, then the
fixed point is a stable fixed point and the equivalence of the
stability of the fixed point and the corresponding periodic
orbit implies that the zero dynamics of the system has a
stable periodic orbit [22]. Therefore, by applying the result
of Theorem 1 in this paper, we can conclude that parame-
ters obtained from the optimization result in a periodic orbit
on the full order system, and thus a stable walking gait is
achieved.

5. IMPLEMENTATION AND RESULTS
This section discusses the simulated and experimental re-

sults on ATRIAS for the multi-domain walking gait previ-
ously obtained. The simulation results show the control sys-
tem’s stability, convergence after perturbations, and SLIP-
like behavior. Experimental results show sustainable and
dynamic walking on a real robotic platform [1].

Simulation Results. A walking gait was generated through
the SLIP-inspired optimization (39), subject to constraints
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Figure 5: Stable periodic orbits in the joint angles and mo-
tor angles for the walking gait generated through the SLIP-
inspired optimization. Note that the difference in shape be-
tween (a) and (b) demonstrate the compliance present in the
robotic system being considered.

that ensure a physically realizable gait on hardware. The
gait was then simulated using the human-inspired controllers
introduced in Sect. 3. The resulting periodic orbits can be
seen in Fig. 5. The robustness of the gait was also inves-
tigated; the system was simulated from a perturbed initial
condition to show the output tracking convergence, as de-
picted in Fig. 6a. Finally, the stability of the gait was numer-
ically verified. For ε = 100, the maximum magnitude of the
Poincaré eigenvalues, 0.7135, is less than one, establishing
the stability of the gait.
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Figure 6: Simulation results: (a) Desired versus actual out-
puts starting from a perturbed point. (b) A comparison of
the center of mass trajectory between the ideal SLIP gait
and the full-order robotic model.

Due to the SLIP-inspired nature of the optimization, the
full-order model gait behavior was compared to the ideal
SLIP model gait. Although they have different speeds and
step lengths, simulation shows that the planar center of mass
trajectory of the full-order gait exhibits patterns very simi-
lar to that of the SLIP gait, as illustrated in Fig. 6b. Note
that the x positions of the two trajectories are on different
scales. To show the similarities, x-axis scaling was adjusted
between the two gaits so that they are in phase. This differ-
ence could be a result of the ideal SLIP model’s massless leg
assumption. In the SLIP model, the leg is assumed massless,
enabling instantaneous swing leg movements during single
support phase. Even though the ATRIAS legs are designed
to be near massless, the motors have large reflected inertias
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Figure 7: Comparison of the actual θEa vs. desired θEd motor
angle trajectories from the experimentation.

resulting in physical limitations on the leg swing. There-
fore, SLIP gaits with very short single support phases may
not be physically possible with the full-order model. An
additional selection criteria could be used to overcome this,
selecting SLIP gaits with an adequate single support dura-
tion to allow for leg swing. Moreover, to achieve sustainable
walking on a real robot, a proper foot clearance constraint is
needed with a maximum non-stance foot height. To satisfy
this constraint, the optimization will tend to find gaits with
a comparatively high center of mass position. Despite these
differences, the full-order system’s walking gait is remark-
ably SLIP-like.

Controller Implementation. For practical realization,
we want to find the desired robot joint angles and velocities
at each iteration through inverse projection from the HZD
surface. Given the HZD surface, we define

ξ1 = δphip(θe) := c1θe + c0, (41)

ξ2 = δṗhip(θe) := c1θ̇e,

where c1 ∈ R11×1, c0 ∈ R are obtained from (19). Since ξ1 is
the linearized position of the hip used to parameterize time
(18), we can write yd(τ(θe), α) = yd(ξ1, α).

Moreover, as a result of selecting outputs that are linear
functions of motor angles θm, the actual outputs can be
written as ya(θe) = Hθm for H ∈ R4×4 with full row rank.
Thus, when the system is constrained to the zero dynamics
surface via feedback control, the actual outputs are equal
to the desired outputs. Therefore, defining the following
functions

Ψ(ξ1, α) := H−1yd(ξ1, α), (42)

Φ(ξ1, α) := H−1 ∂y
d(ξ1, α)

∂ξ1
(43)
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Figure 8: Comparison of actual θ̇Ea vs. desired θ̇Ed motor
velocities trajectories from experimentation.

yields the desired motor angles and their corresponding ve-
locities, θdm = Ψ(ξ1, α) and θ̇dm = Φ(ξ1, α)ξ2. That is, we can
reconstruct the desired motor angles and velocities from the
system outputs on the HZD surface. Tracking these joint
angles and velocities on the robot is equivalent to tracking
the outputs of the robot, i.e., the restriction of the dynamics
to the partial zero dynamics surface is maintained.

PD controllers are then used to track the desired motor
angles and velocities obtained from the HZD reconstruction:

τPD = −Kp(θ
a
m − θdm)−Kd(θ̇

a
m − θ̇dm), (44)

where Kp and Kd are proportional and derivative constant
matrices, respectively. Here, the elements of the Kp and Kd

matrices depend on their corresponding motors.

Experimental Setup. ATRIAS is supported by a boom
that constrains it to the sagittal plane so as to emulate a
2D planar robot. In addition, boom encoders at each degree
of freedom provide full feedback on the robot’s torso posi-
tion and rotation relative to the world. During experiments
the boom also functions as a safety mechanism to catch the
robot in the event of a fall; it does not provide any support
in the sagittal plane at any other time.

Each experiment was conducted in a similar manner. The
control system was initially enabled while ATRIAS was sus-
pended in the air, allowing the software to drive the robot
to an initial pose. ATRIAS was then lowered to the ground
and manually given an initial impulse to initiate the walking
motion. Fig. 7 and Fig. 8 show the tracking of the motor
angles and velocities of the left and right legs during four
walking steps with the left leg as the stance leg for the first
step. Note that the subscripts ’L’ and ’R’ in the subtitles
represent the left and right leg, respectively. The tracking
errors are exceptionally small with motor torque inputs that
remain within the robots capabilities (see Fig. 10). This re-
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Figure 10: Corresponding torque input of each motors.

sults in a dynamically stable walking gait that visually ap-
pears very“SLIP-like”. The snapshot in Fig. 9 illustrates the
extraordinary similarities between the simulated and experi-
mental gaits. The video of the experiment shows sustainable
walking with ATRIAS and is available online [1].

Conclusions. This paper successfully demonstrates under-
actuated multi-domain walking on the compliant bipedal
robot ATRIAS. Our approach starts with a passive walking
gait generated by a reduced-order SLIP model that captures
the primary dynamics of the robot. From this an optimal
walking controller is derived using hybrid zero dynamics.
Comparisons of the simulated and experimental results il-
lustrate the effectiveness of the proposed methods and high-
light the remarkably natural look of the gait.
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