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ABSTRACT
Bipedal robotic running remains a challenging benchmark
in the field of control and robotics because of its highly
dynamic nature and necessarily underactuated hybrid dy-
namics. Previous results have achieved bipedal running ex-
perimentally with a combination of theoretical results and
heuristic application thereof. In particular, formal analysis
of the hybrid system stability is given based on a theoreti-
cal model, but due to the gap between theoretical concepts
and experimental reality, extensive tuning is necessary to
achieve experimental success. In this paper, we present a
formal approach to bridge this gap, starting from theoretical
gait generation to a provably stable control implementation,
resulting in bipedal robotic running. We first use a large-
scale optimization to generate an energy-efficient running
gait, subject to hybrid zero dynamics conditions and feasi-
bility constraints which incorporate practical limitations of
the robot model based on physical conditions. The stabil-
ity of the gait is formally guaranteed in the hybrid system
model with an input to state stability (ISS) based control
law. This implementation improves the stability under prac-
tical control limitations of the system. Finally, the method-
ology is experimentally realized on the planar spring-legged
bipedal robot, DURUS-2D, resulting in sustainable running
at 1.75 m/s. The paper, therefore, presents a formal method
that takes the first step toward bridging the gap between
theory and experiment.
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Figure 1: The spring-legged planar running biped, DURUS-
2D, during take off (left) and while airborne (right).

CCS Concepts
•Theory of computation → Numeric approximation
algorithms; Convex optimization; •Computer sys-
tems organization→Robotic control; •Applied com-
puting → Physical sciences and engineering;
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1. INTRODUCTION
The task of controlling bipedal robot is often a precar-

ious balance between maintaining formal stability guaran-
tees and expanding control capabilities. This duality has
been present since the genesis of bipedal control. Beginning
in the 1960’s, Zero Moment Point [29] methods were the
original foundation of formal biped control, but its valid-
ity required significant restrictions on the dynamics of the
robot (fully-actuated flat-footed contact). In contrast, the
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Figure 2: (a) The model of DURUS-2D with two linear
springs; (b) The directed cycle structure of the multi-domain
hybrid system model for DURUS-2D running.

Raibert hoppers [22] exhibited agile bounces and flips that
remain impressive today. But their control was built with-
out the a priori confidence of formal methods. Research
over the following decades has considerably narrowed this
formality gap, with formal approaches rising to the chal-
lenge of underactuation [18, 21, 27, 12] and highly dynamic
robots incorporating formal analysis in their control [7, 24].

Bipedal robotic running, despite the 30 years that have
passed since the Raibert’s hopper, remains an extremely
difficult control problem. Very few control methodologies
have been presented that lead to experimental success with
prominent aerial phases [28, 22, 27]. With an eye toward
viewing bipedal running as a hybrid dynamical system: an
alternating sequence of stance and flight domains with in-
stantaneous impacts in between, the notion of hybrid zero
dynamics (HZD) was used in [10, 5, 19].

HZD operates on a principle of dimensional reduction,
aimed at simplifying the numerous degrees of freedom present
in legged machines, while also allowing for underactuation.
This framework was used to enable bipedal running on MA-
BEL [27], a pivotal demonstration showing the intersec-
tion of theory and experiment. However, on top of the
HZD framework used on MABEL, there are also important
expert-driven adjustments to the implementation, like tun-
ing of control loops, adding feedforward trajectories, and
on-line parameter update routines. One way to interpret
this is: the gap between the assumed model and the ex-
perimental testbed necessitated modifications in the control
implementation that is needed to realize stable robotic run-
ning. Similar modifications have been used previously for
robotic walking implementations [20, 26, 14]. We seek to
further reduce the need for this expert adjustment with for-
mal stabilizing controllers.

There are two main central principles underlying our ap-
proach: a) gait synthesis via an optimization method, b)
controller design that yields formal guarantees of robustness.
We use a direct collocation based optimization method cou-
pled with HZD constraints to generate running gaits on the
spring-legged robot, DURUS-2D (Fig. 1). This nonlinear
programming is notably fast, capable of generating a feasi-
ble running gait within a minute that satisfies all physical
limitations of the running dynamics. However, the resulting
gait that was built upon an ideal model and precise sensing
cannot guarantee experimental realization. Unlike theoret-
ical simulation, where most variables are either measurable
or exclusively solvable, real world experiments suffer from a

wide array of uncertainties. Indeed, uncertainties like un-
modeled dynamics, nonlinear stiffness properties, damping
effects and actuators, poor signal to noise ratio, and even
deformations due to impacts are often observed. Therefore,
we not only seek a fast optimization approach that yields
feasible solutions under the assumed model, but also seek a
controller formally guaranteeing robustness under real-world
constraints. In this paper, we use the notion of input to
state stability (ISS) that captures the practical limitations
of the actuator inputs in an elegant manner. Specifically
we address the phase based uncertainty that are typically a
high deterrence in tracking parameterized functions. Simi-
lar problems involving inaccurate phase determinations were
solved in [16], where pure time based parameterizations were
used. But this paper will construct time+state based pa-
rameterizations to yield stronger stability conditions. Note
that, in order to realize running, a variety of uncertainties
need to be considered. So we will use the solutions from [15,
6] to account for the remaining uncertainties.

The paper is structured as follows. Section 2 introduces
the HZD framework in the context of running, and the direct
collocation based optimization method to generate running
gaits (outputs). Next, Section 3 introduces a state+time
based controller for driving these outputs to zero. By using
the notion of ISS criterion for hybrid systems, we estab-
lish ultimate boundedness and also realize robust variants
of the controller [16]. Finally in Section 4, 5, an experi-
mental implementation is explained in detail, together with
some simulated results where similar uncertainty was added
to the model. The result is a stable, sustainable and agile
running on DURUS-2D at 1.75 m/s, with a notable ground
clearance and 60% aerial phase. We believe that this suc-
cessful hardware implementation, which matches simulation
results, indicates an important step toward bridging the gap
between theory and experiment.

2. HZD GAIT GENERATION
In this section, we will introduce the hybrid model of the

bipedal running robot, DURUS-2D (Fig. 1). This is the
planar version of the three-dimensional DURUS humanoid
robot designed and built by SRI International with the ob-
jective of achieving dynamic multi-domain underactuated lo-
comotion [13, 9] with special emphasis on energy efficiency.
But in the context of running, we will take our first step by
investigating the characteristics of 2D robots.

2.1 Hybrid Model of Running
Model Configuration. As shown in Fig. 2a, the config-
uration space Q ⊂ Rn, n = 9, of DURUS-2D is defined as
q = (sfx, sfz, θsf , rsp, θsk, θsh, θnsh, θnsk, rnsp)

T ∈ Q, where
sfx and sfz are the positions of the end points of the stance
foot along x and z directions, rsp, rnsp are the deflections of
the springs on stance and nonstance legs, θ� are the joint
angles of the stance foot, stance knee, stance hip, nonstance
hip and nonstance knee. In addition, the control inputs are
defined as u = (usk, ush, unsh, unsk)T ∈ Rk, k = 4, which
represent the torque applied at knee and hip joints.

Hybrid System Model. Bipedal robotic running is rep-
resented by a special class of hybrid systems: systems with
impulse effects. They can be represented by a tuple:

H = (D, S,U ,∆,FG).

Here, D = {Ds,Df} is the set of domains which are the



sets of possible states assumed by the robot. For running,
we have the stance domain Ds, where only stance foot is
on the ground; and the flight domain Df , where both feet
are swinging in the air (see Fig. 2b). The set of guards
S = {Ss, Sf} represent the switching surfaces, which are
states of the robot at transition. Possible guards are the
transition from stance to flight domain: Ss, and the transi-
tion from flight to stance domain: Sf . Besides, U is the set of
admissible inputs, ∆ is the set of switching functions, called
impact maps and finally FG is the set of fields yielding the
continuous dynamics. A mathematical representation of the
hybrid system in terms of output dynamics will be given in
Section 3.3.

Continuous Dynamics. The Equation of Motion (EOM)
over a continuous domain Dv, v ∈ {s, f}, is determined by
the Euler-Lagrange equation and holonomic constraints [11]:

D(q)q̈ +H(q, q̇) = Bu+ JTv (q)Fv,

Jv(q)q̈ + J̇v(q, q̇)q̇ = 0, (1)

where D(q) ∈ Rn×n is the inertia matrix, H(q, q̇) ∈ Rn con-
tains the Coriolis-centrifugal and gravity terms, B ∈ Rn×k
is the actuation distribution matrix, Jv(q) ∈ Rn×m is the
Jacobian of the holonomic constraints Γv(q), and Fv ∈ Rm
is a wrench containing the constraint forces or moments,
which can be explicitly solved as a function of system states
and inputs. The holonomic constraints for each domain are
defined as

Γs(q) =
(
sfx, sfz, rnsp

)T
Γf(q) =

(
rsp, rnsp

)T
, (2)

meaning, the stance foot must remain on the ground during
the stance domain, and stance and nonstance springs must
be locked during the flight domain. More details about con-
strained dynamics can be found in [11]. Further, by defining
x = (q, q̇) ∈ R2n, the EOM can be converted to an affine
control system:

ẋ = fv(x) + gv(x)u. (3)

Discrete Dynamics. Because of the landing impact at
the end of flight domain Sf , and the hard stop to prevent
stance spring from further oscillation at the end of stance
domain Ss, discrete dynamics are considered (see Fig. 2b).
The discrete dynamics are determined by changes in the con-
tact points of the system, for which only the velocity terms
are affected through the plastic impacts by imposing the
holonomic constraints of the subsequent domain. And the
roles of the “stance” and “nonstance” legs are simultaneously
swapped. Similar dynamics were detailed for walking in [4].

2.2 HZD control Framework
Virtual Constraints (Outputs). Any applicable state-
based feedback controllers that have been applied on the
control system, yield a closed-loop hybrid system [5]. This
can be done by defining a set of outputs and applying feed-
back controllers to drive them to zero. In other words, we
define the outputs (also often refereed to as the virtual con-
straints [20]) of the system on a domain Dv, v ∈ {s, f} as

yv(q) = ya(q)− ydv(τv), (4)

where ya : Q→ Rk is the actual output of the system. Here,

it is chosen as the four actuated joint angles:

ya(q) =
[
θsk θsh θnsh θnsk

]
. (5)

And ydv : R≥0 → Rk is the desired output represented by a
set of 5th order Bézier curves ydv = B(αv, τv) (the parame-
ters αv are solved by an optimization in Section 2.3). The
phase variable τv is used to modulates the desired outputs
ydv . Normally, in order to make the outputs purely state
based, we can have the phase variable τv : Q→ R≥0, purely
a function of the robot configuration:

τv(q) =
θsf − p+v
p−v − p+v

, (6)

with p−v , p
+
v the initial and final position of θsf for Dv. Al-

though, it must be noted that state based modulation has
implementation difficulties due to noisy sensing of under-
actuated degrees of freedom of DURUS-2D. This motivates
the use of a time based phase variable τv : R≥0 → R≥0,

τv(t) =
∑5
i=0 pit

i,

where pi is a set of power series polynomial coefficients ob-
tained by a curve fitting from τv(q) w.r.t. time. This has
desirable stability properties under sensory perturbations,
which will be discussed in Section 3.

State-Based Feedback Controller. To drive the virtual
constraints (outputs) yv → 0 exponentially for each domain
Dv, we utilize the feedback linearization control law [3]:

uv =
(
LgLfyv

)−1 (−L2
fyv + µv

)
, (7)

with L the Lie derivative. Applying this control law yields
the output dynamics ÿv = µv. Further, by picking µv as

µv = −2

ε
ẏv −

1

ε2
yv, 0 < ε < 1, (8)

the virtual constraints will converge to zero exponentially at
the rate 1/ε > 0. Since the number of virtual constraints
is less than the degrees of freedom of the robot, the un-
controlled states evolve according to the zero dynamics. In
other words, we have a set of states defined by the vector:
ηv = [yv, ẏv]T ∈ R2k, that are controllable, and the set of
states defined by zv, that are uncontrollable and normal to
ηv for each domain Dv. We can then reformulate (1) to the
following form:

η̇v =

[
0k×k 1k×k
0k×k 0k×k

]
︸ ︷︷ ︸

F

ηv +

[
0k×k
1k×k

]
︸ ︷︷ ︸

G

µv

żv = Ψv(ηv, zv), (9)

where Ψv is assumed Lipschitz continuous. The convergence
of the outputs ηv can be shown in terms of Lyapunov func-
tions: Vε(ηv) = ηTv Pεηv, where Pε is the solution to the con-
tinuous time algebraic Riccati equation (CARE) (see [3]).

By choosing µv(η) from (8), we have V̇ε ≤ − γεVε with γ the
constant obtained from the CARE. Note that in order to
make DURUS-2D run experimentally, a time-based feedback
controller is ultimately deployed, which will be explained in
Section 3.

Hybrid Zero Dynamics. Given the control law (8), the
controllable states ηv are driven exponentially to zero. In
other words, the control law (7) renders the zero dynamics
surface exponentially stable and invariant over both contin-
uous domains [5]. However, due to the impact dynamics at



the end of each domain, the invariance of the zero dynamics
surface is not guaranteed. Therefore, the goal is to find a
set of parameters α = {αs, αf}, which defines the desired
outputs (4), to ensure there exists a periodic orbit and the
zero dynamics surface

Zv={(q, q̇) ∈ Dv : yv(q) = 0, ẏv(q, q̇) = 0}, v ∈ {s, f},

is invariant through impacts, i.e., hybrid invariant. Mathe-
matically, hybrid invariance is represented as

∆(Zs ∩ Ss) ⊂ Zf ,

∆(Zf ∩ Sf) ⊂ Zs. (10)

The process of finding α is often formulated as a nonlin-
ear constrained optimization problem subject to the multi-
domain hybrid system model. Details about the construc-
tion of HZD on walking robots can be found in [5].

2.3 Direct Collocated Gait Optimization
Once a hybrid control model is defined, a periodic run-

ning gait that can be implemented on DURUS-2D is needed.
For this purpose, an optimization algorithm is utilized to
determine the parameters α that guarantee HZD. Tradi-
tionally, direct shooting methods based nonlinear program-
ming (NLP) is often used in bipedal walking [23, 5, 26,
30] and even planar running [31, 27]. However, its key
methodology—numerical integration—has made it compu-
tationally expensive to solve for a running gait, due to the
multiple degrees of underactuation involved in the multi-
domain hybrid system. Therefore a direct collocation method
based NLP is used under the HZD framework. Previously,
this method has been applied to the humanoid DURUS to
successfully achieve walking [12]. And an extensive study
about this NLP on simulated 3D running is detailed in [17].

Essentially, we discretized each continuous domain Dv
based on time tiv, where i = 1, 2...N is defined as the grid
index. Let xi and ẋi be the approximate states and its
derivative at node i, the defect constraints at each odd node
are defined as

ẋi − 3(xi+1 − xi−1)/2Mtiv + (ẋi−1 + ẋi+1)/4 = 0,

ẋi − (xi+1 − xi−1)/2Mtiv + Mtiv(ẋi−1 + ẋi+1)/8 = 0,

where Mtiv = ti+1
v − ti−1

v . Plus, xi, ẋi need to satisfy the dy-
namical constraints ẋi = fv(xi) + gv(xi)ui, where ui is ex-
clusively solved by (7). In summary, the nonlinear dynamics
are treated as an equality constraint with the use of implicit
Runge-Kutta methods and defect variables. This modifica-
tion also allows the analytical Jacobians of all optimization
constraints to be pre-computed, which dramatically scales
down the computation cost. This can also significantly in-
crease the possibilities of finding a feasible solution to the
nonlinear system.

Finally, the direct collocation based, constrained optimiza-
tion can be stated as:

Z∗ = argmin
Z

∑
v={s,f}

Jv(Zv) (11)

s.t Zmin ≤ Zv ≤ Zmax, (12)

Cmin ≤ C(Zv)≤ Cmax, (13)

where Zv is the set of all unknowns including the parame-
ters α that define the running gait, Jv(Zv) is the objective
function which minimizes the torque inputs. And C(Z) is a

collection of necessary constraints, such as HZD constraints
in (10). A major difference between walking and running,
the foot clearance constraint for the flight domain, needs to
be enforced on both feet to ensure the robot is in the air.
More details about constructing other physical and geomet-
ric constraints can be found at [17]. By utilizing this NLP,
we are able to generate a HZD running gait within 43 s from
a initial guess at 0, whereas a direct shooting method could
require hours of computation [31].

3. TIME BASED FEEDBACK
By using the feedback control law given by (7), (8), it

can be shown that with sufficiently small ε, the output dy-
namics are exponentially driven to zero. In fact, [3] shows
that by picking a rapidly exponentially stable control Lya-
punov function (RES-CLF), locally exponentially stable hy-
brid periodic orbits can be realized. However in reality, due
to the difficulty in estimating the phase variable (6) (which
is a function of the unactuated degrees of freedom), a bet-
ter controller is required that is less susceptible to the noisy
state estimation. Motivated by the time based implementa-
tion of the tracking controller in [16], the goal of this section
is to construct a controller that uses a time based instead of
state based desired trajectory for robotic running.

3.1 Input to State Stability
Feedback Linearization for Time Based Outputs. For
the ease of notations, we will omit the domain representa-
tions (the subscripts v) in this section. If the state based
desired relative degree two outputs are functions of q, yd :
Q→ Rk, then the time based desired outputs are functions
of time yt,d : R≥0 → Rk. We thus have the time based
output representation as follows:

yt(t, q) = ya(q)− yt,d(τ(t)). (14)

Similar to the construction of state based controller (7), we
would drive yt → 0 exponentially. Therefore, the feedback
controller that linearizes the time based output is given as

ut =
(
LgLfya

)−1
(
−L2

fy
a + ÿt,d + µt

)
, (15)

where µt is the linear feedback applied after the feedback
linearization. We can either pick µt via a simple PD law

µt = −2

ε
ẏt − 1

ε2
yt, (16)

for some 0 < ε < 1, or via an optimal control law through
control Lyapunov functions (CLFs). Nevertheless, using the
time based feedback linearizing controller (15) reduces the
nonlinear system (3) to the normal form

η̇t =

[
0k×k 1k×k
0k×k 0k×k

]
︸ ︷︷ ︸

F

ηt +

[
0k×k
1k×k

]
︸ ︷︷ ︸

G

µt

żt = Ψt(ηt, zt), (17)

which is similar to (9), but with the use of time based out-
puts: ηt = [yt, ẏt]T ∈ R2k. Note that the zero dynamics
coordinates zt, evolve based on time due to the dependency
on ηt. Accordingly, if the time based transverse dynamics
ηt are 0, we have the zero dynamics żt = Ψt(0, zt). Conver-
gence of the time based outputs can be ensured by picking
an appropriate time based control law (16). But this con-
troller does not necessarily ensure the convergence of the



state based outputs. We are interested in the stability of
the state based transverse dynamics (η), given that the time
based control law is implemented on the robot.

State based vs. time based control laws. Given the
controller (16) that could drive the time based outputs ηt →
0, we will study the evolution of the state based outputs η
in (9). By the assumption of Theorem 1 in [3], the controller
yields an exponentially stable periodic orbit for hybrid dy-
namics. Therefore, we will obtain conditions for the stability
of this hybrid periodic orbit when a time based control law
is applied. Picking the input (15) on the dynamics of state
based output y, we have

ÿ =L2
fy + LgLfyut, (18)

ÿ =L2
fy + LgLfyu︸ ︷︷ ︸

=µ

+LgLfy(ut − u)︸ ︷︷ ︸
=:d

, (19)

ÿ =µ+ d, (20)

where d = LgLfy(LgLfya)−1(−L2
fy
a+ ÿt,d+µt)−µ+L2

fy,
is obtained by substituting for ut, u from (7), (15). An alter-
native interpretation of (18) is that, the stabilizing control
input µ(η) (which is state based) should have been applied,
but instead, the time based input µ + d was applied to the
state based output dynamics of y. Applying a time based
feedback control law completely eliminated the dependency
on the noisy phase variable τ(q), but the consequence is the
appearance of the disturbance input d. The expression for
d can be further simplified to

d(t, q, q̇, q̈, µt, µ) = (µt − µ) + (ÿt,d − ÿd). (21)

We know that, yd = yd(τ(q)) (for bipedal robots), and it can
be observed that d becomes small by minimizing the error
ÿt,d(τ(t))− ÿd(τ(q)). Therefore d can be termed time-phase
uncertainty, or just phase uncertainty.

In the context of linear systems, it is important to have
bounded state based output dynamics if d is bounded. Of
course, the time based outputs ηt → 0. Denote the supre-
mum of the uncertainty over time as ‖d‖∞, we can easily
establish that a bounded d results in bounded outputs y, ẏ
(or just η), for the continuous dynamics. However, due to
the impact dynamics that are not just nonlinear, but also
extremely destabilizing (the noisy impacts can be observed
in the video [1]), output boundedness cannot be guaranteed
for the hybrid dynamics. This motivates using the notion of
input to state stability to establish boundedness on the state
based outputs for bipedal robotic running on DURUS-2D.

Going back to (18), we can substitute this formulation in
(9), which results in the following representation:

η̇ = Fη +Gµ+Gd,

ż = Ψ(η, z). (22)

As mentioned before, we are free to pick µ(η) (say (8)), since
the actual control input applied is time based µt(ηt) (from
(36)) which is implicit in d. From the point of view of the
state based outputs η, we have the following representation
dynamics of the Lyapunov function:

V̇ε = ηT (FTPε + PεF )η + 2ηTPεGµ+ 2ηTPεGd, (23)

obtained by substituting (22) for η. Using the linear feed-
back law µ(η) from (8), the following is obtained:

V̇ε ≤ −
γ

ε
Vε + 2ηTPεGd. (24)

It should be noted that even though the time based con-
troller leads to convergence of time based outputs yt → 0,
equation (24) extends it to state based outputs y that are
driven exponentially to an ultimate bound. And this ulti-
mate exponential bound is explicitly derived from d, which
is established via the notion of input to state stability (ISS).

Input to State Stability. We will first introduce the basic
definitions and results related to ISS for a general nonlinear
system and then focus on the hybrid running dynamics (see
[25] for a detail survey on ISS). Assume we have a general
nonlinear system, represented in the following fashion:

ẋ =f(x, d), (25)

with x taking values in Euclidean space Rn, the input d ∈
Rm for some positive integers n,m. The mapping f : Rn ×
Rm → Rn is considered Lipschitz continuous and f(0, 0) =
0. It can be seen that the input considered here is d. There-
fore, the construction is such that a stabilizing controller
u(x) has been applied (such as (7)). Any deviation from
this stabilizing controller can be viewed as u(x) + d, with d
being a new disturbance input. In the example of the lin-
earized system (22), a suitable stabilizing controller µ(η) is
applied and the effect of the disturbance input d is analyzed.
We assume that d takes values in the space of all Lebesgue
measurable functions: ‖d‖∞ = ess.supt≥0‖d(t)‖ <∞, which
can be denoted as d ∈ L∞.

Class K∞ and KL functions. A class K∞ function is
a function α : R≥0 → R≥0 which is continuous, strictly
increasing, unbounded, and satisfies α(0) = 0. And a class
KL function is a function β : R≥0 × R≥0 → R≥0 such that
β(r, .) ∈ K∞ for each t and β(., t)→ 0 as t→∞.

We can now define ISS for the system (25).

Definition 1. The system (25) is input to state stable
(ISS) if there exists β ∈ KL, ι ∈ K∞ such that

|x(t, x0)| ≤ β(|x0|, t) + ι(‖d‖∞), ∀x0, ∀t ≥ 0, (26)

and considered locally ISS, if the inequality (26) is valid for
an open ball of radius r, x0 ∈ Br(0).

Definition 2. The system (25) is exponentially input to
state stable (e-ISS) if there exists β ∈ KL, ι ∈ K∞ and a
positive constant λ > 0 such that

|x(t, x0)| ≤ β(|x0|, t)e−λt + ι(‖d‖∞), ∀x0, ∀t ≥ 0, (27)

and considered locally e-ISS, if the inequality (27) is valid
for an open ball of radius r, x0 ∈ Br(0).

ISS-Lyapunov functions. We can develop Lyapunov func-
tions that satisfy the ISS conditions and achieve the stability
property.

Definition 3. A smooth function V : Rn → R≥0 is an
ISS-Lyapunov function for (25) if there exist functions α,
ᾱ, α, ι ∈ K∞ such that

α(|x|) ≤ V (x) ≤ ᾱ(|x|)

V̇ (x, d) ≤ −α(|x|) for|x| ≥ ι(‖d‖∞). (28)

The following lemma establishes the relationship between
the ISS-Lyapunov function and the ISS of (25).

Lemma 1. The system (25) is ISS if and only if it admits
a smooth ISS-Lyapunov function.



Proof of Lemma 1 was given in [25]. In fact the inequal-
ity condition can be made stricter by using the exponential
estimate:

V̇ (x, d) ≤ −cV (x) + ι(‖d‖∞), ∀x, d. (29)

which is then called the e-ISS Lyapunov function.

3.2 Phase Uncertainty to State Stability
We can now define the notion of phase to state stabil-

ity (PSS). Without loss of generality, we denote (η, z) =
(ηv, zv), and the subscript v will be specified when a specific
domain (s or f) is considered.

Definition 4. Assume a ball of radius r centered at the
origin. The system given by (22) is locally phase to η sta-
ble, if there exists β ∈ KL, ι ∈ K∞ such that

|η(t)| ≤ β(|η(0)|, t) + ι(‖d‖∞),∀η(0) ∈ Br(0), ∀t ≥ 0, (30)

and it is locally PSS if

|(η(t), z(t))| ≤ β(|(η(0), z(0))|, t) + ι(‖d‖∞),

∀η(0) ∈ Br(0), ∀t ≥ 0.

Based on the asymptotic gain and zero stability property of
the system (22) w.r.t. the phase uncertainty d, we have the
following lemma.

Lemma 2. Given the controller µ(η) in (8), the system
(22) is phase to η stable.

Proof. Based on the constructions of the Lyapunov func-
tion Vε, we have the dynamics of the from (24):

V̇ε ≤ −
γ

ε
Vε + 2ηTPεGd

≤ −γ
ε
Vε + 2|η|‖Pε‖‖d‖∞

≤ − γ

2ε
Vε for |η| ≥ 4c2

γc1ε
‖d‖∞, (31)

which is thus an ISS-Lyapunov function (28).

We can also realize exponentially ultimate boundedness
of the entire dynamics by appending a state based linear
feedback law to the time based feedback controller (16)

uT = ut + µ̄, (32)

which results in the following output dynamics in the place
of (18):

ÿ = µ+ d+ LgLfyµ̄. (33)

LgLfy can be explicitly computed as LgLfy = JD−1B,
where D and B are obtained from (1), and J = ∂y/∂q is
the Jacobian of the outputs. Since D is invertible, it can be
easily shown that JD−1B is invertible. By applying (32),
system (22) will have an extra input µ̄ that yields:

η̇ = Fη +Gµ+Gd+GJD−1Bµ̄

ż = Ψ(η, z), (34)

then (24) gets reformulated as

V̇ε ≤ −
γ

ε
Vε + 2ηTPεGd+ 2ηTPεGJD−1Bµ̄. (35)

By picking a control law for the auxiliary input

µ̄ = − 1

2ε̄
(JD−1B)−1GTPεη, (36)

we have the following simplification of (35):

V̇ε ≤ −
γ

ε
Vε + 2ηTPεGd−

1

ε̄
ηTPεGG

TPεη. (37)

Therefore, by defining the semi-definite function V̄ε(η) =
ηTPεGG

TPεη, we can pick ε̄ small enough to cancel the ef-
fect of phase uncertainty on the dynamics. Lemma 2 can
now be redefined to obtain exponential ultimate bounded-
ness for the new control input (32).

Lemma 3. Given the controllers µ(η) in (8), and µ̄(η)
in (36), the system (34) is exponentially phase to η stable
w.r.t. the input disturbance d ∈ L∞.

Proof. We again pick the derivative of the Lyapunov
function Vε resulting in

V̇ε ≤ −
γ

ε
Vε −

1

ε̄
ηTPεGG

TPεη + 2ηTPεGd

≤ −γ
ε
Vε for |η| ≥ 2ε̄c2

c21ε
2
‖d‖∞, (38)

which satisfies the exponential estimate (29).

Now Lemma 3 can be extended to include the uncontrolled
states z given that they are stable. Let Y ⊂ R2k, Z ⊂
R2(n−k), φt(η, z) be the flow of (34) with the initial condition
(η, z) ∈ Y × Z. And let the flow φt be periodic with period
T∗ > 0 and a fixed point (η∗, z∗) if φT∗(η∗, z∗) = (η∗, z∗).
Associated with the periodic flow is the periodic orbit

O = {φt(η∗, z∗) ∈ Y × Z : 0 ≤ t ≤ T∗}.

Similarly, we denote the flow of the zero dynamics given by
(34) by φt|z and for a periodic flow we denote the corre-
sponding periodic orbit by Oz = O|z. Due to the invariance
of the zero dynamics, we have the mapping O = ι0(Oz),
where ι0 : Z → Y × Z is the canonical embedding. For any
(η, z), we can denote the distance from O as ‖(η, z)‖O. We
now have the following theorem to establish phase to state
stability of O.

Theorem 1. Assume that the periodic orbit Oz ⊂ Z is
exponentially stable in the zero dynamics. Given the con-
trollers µ(η) in (8), µ̄(η) in (36) applied on (34), that render
the outputs exponential phase to η stable, then the periodic
orbit O obtained from the canonical embedding is exponen-
tially phase to state stable.

Proof sketch. By the converse Lyapunov theorems, we
can construct a quadratic Lyapunov function for the zero dy-
namics, Vz(z) that satisfies the exponential inequality con-
straint:

c4‖z‖2Oz
≤ Vz ≤ c5‖z‖2Oz

,

∂Vz
∂z

Ψ(0, z) ≤ −c6Vz,
∣∣∣∣∂Vz∂z

∣∣∣∣ ≤ c7‖z‖Oz , (39)

where ‖z‖Oz = ‖(0, z)‖O. Consider the following Lyapunov
candidate for the full order dynamics: Vc(η, z) = σVz(z) +
Vε(η). This Lyapunov function is quadratic and satisfies the
boundedness properties. Taking the derivative

V̇c ≤ −σ
∂Vz
∂z

Ψ(η, z) + σ
∂Vz
∂z

(Ψ(η, z)−Ψ(0, z)) + V̇ε,

≤ −σc6Vz + σc7Lq‖z‖Oz‖η‖ −
γ

ε
Vε, for |η| ≥ 2ε̄c2

c21ε
2
‖d‖∞,

where the bounds on η are obtained from (38). By picking

a suitable σ, we can render V̇ε negative definite.
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Figure 3: Limit cycles of (a) simulation where time based IO + state based PD controller was applied for 100 steps; (b)
Simulation where white noise was added to τv(q); (c) Experimental data. Note the solid lines are the designated gait.

3.3 PSS for Hybrid Dynamics
In this part, we can extend the stability properties for

hybrid systems. The subscripts v will be reintroduced to
distinguish the domain representations. Here, we define the
two-domain hybrid system that represents running dynamics
of the robot in the following manner:

H =



η̇v = Fηv +Gµv +GJD−1Bµ̄v +Gd
żv = Ψv(ηv, zv), if(ηv, zv) ∈ Dv\Sv
η+f = ∆η(η−s , z

−
s )

z+f = ∆z(η
−
s , z

−
s ), if(η−s , z

−
s ) ∈ Ss

η+s = ∆η(η−f , z
−
f )

z+s = ∆z(η
−
f , z

−
f ), if(η−f , z

−
f ) ∈ Sf

(40)

where η = {ηs, ηf}, z = {zs, zf}, Dv are the domains and Sv
are the switching surfaces given by

Ds = {(ηs, zs) ∈ Y × Z : hnsf > 0, hsf = 0},

Ss = {(ηs, zs) ∈ Y × Z : hnsf > 0, hsf = 0, ḣsf ≥ 0},
Df = {(ηf , zf) ∈ Y × Z : hnsf ≥ 0, hsf > 0},

Sf = {(ηf , zf) ∈ Y × Z : hnsf = 0, hsf > 0, ḣnsf < 0},

with hsf , hnsf : Y × Z → R the heights of the stance and
nonstance foot respectively. The reset map ∆(ηv, zv) =
(∆η(ηv, zv),∆z(ηv, zv)) represents the discrete dynamics of
the system. For the robot, it represents the impact dynam-
ics of the system when it switches from flight to stance phase
and vice versa. Plastic impacts are assumed.

In order to obtain bounds on the output dynamics for
hybrid periodic orbits, it is assumed that H has hybrid zero
dynamics for state based control law given by (7) and (8).
More specifically we assume that ∆η(0, zv) = 0, so that the
surface Z is invariant through the discrete dynamics. The
hybrid zero dynamics can be described as

H |Z =


żv = Ψ(0, zv) if zv ∈ Z\(Ss ∪ Sf)
z+f = ∆z(0, z

−
s ) if z−s ∈ (Ss ∩ Z)

z+s = ∆z(0, z
−
f ) if z−f ∈ (Sf ∩ Z).

(41)

Let φt(η, z) be the hybrid flow of (22) with the initial
condition (η, z), t be the time, which is typically the time
taken to pass through all domains. Since we are considering
a two-domain hybrid system, if (η, z) ∈ Sf , then φt(η, z) =
φf
t1 ◦∆◦φ

s
t2(∆(η, z)), and t = t1+t2. The flow φt is periodic

with period T > 0, and a fixed point φT (η∗, z∗) = (η∗, z∗).
For the period T , T1, T2 are the impact times in the two
domains such that T1+T2 = T . Associated with the periodic

flow is the periodic orbit O = {φs
t1(∆(η∗, z∗)) ∪ φf

t2 ◦ ∆ ◦
φs
T1

(∆(η∗, z∗)) : 0 ≤ t1 ≤ T1, 0 ≤ t2 ≤ T2}. Similarly, we
denote the flow of the zero dynamics ż = Ψ(0, z) by φT |z
and for a periodic flow we denote the corresponding periodic
orbit by Oz ⊂ Z. The periodic orbit in Z corresponds to
a periodic orbit for the full order dynamics, O = ι0(Oz),
through the canonical embedding ι0(z) = (0, z).

Main Theorem. We can now introduce the main theorem
of the paper. Similar to the continuous dynamics, it is as-
sumed that the periodic orbit Oz is exponentially stable in
the hybrid zero dynamics.

Theorem 2. Let Oz be an exponentially stable periodic
orbit of the hybrid zero dynamics H |Z transverse to S ∩
Z. Given the controllers µv(ηv) in (8), µ̄v(ηv) in (36), and
given r > 0 such that (η, z) ∈ Br(0, 0), then there exists
δd > 0 such that ∀ ‖d‖∞ < δd the periodic orbit O is phase
to state stable.

Proof sketch. A sketch of the proof is provided here
due to space limits. We shall use most of the concepts
from [3]. Proof is also similar to that provided for param-
eter uncertainty in [15]. The key idea is to establish the
boundedness of states for a bounded phase uncertainty d.
We just need to realize a discrete time Lyapunov function
for a Poincaré map that satisfies the conditions of an ISS-
Lyapunov function. Note that for a small enough ε > 0,
and ‖d‖∞ = 0, the full order periodic orbit O is exponen-
tially stable. For ‖(η, z)‖O ≥ ι(‖d‖∞), we know that with
sufficiently small ε̄ in (36) we can retain the original conver-
gence rate as indicated by (38). Thus, for the continuous

dynamics, V̇ε ≤ − γεVε for ‖(η, z)‖O sufficiently large. With
this inequality, all of the formulations from equations (61)
to (67) in [3] can be used. In other words, the periodic or-
bit O is exponentially converging till the ultimate bound,
meaning the periodic orbit O is exponentially phase to state
stable.

Theorem 2 has powerful implications, due to the elimina-
tion of the noisy phase variable estimation. This elimination
has its effect on tracking, which yields lower errors than that
for the noisy phase based modulation. The time based phase
modulation is a smooth and better candidate to replicate the
unknown actual phase of the robot. This methodology can
be easily extended to all kinds of additive uncertainties ob-
served in hybrid systems in general. See [15] for analysis on
parameter uncertainty.



Figure 4: Experimental setup for DURUS-2D running: 1)
Control station computer, 2) Emergency stop, 3) Four LiPo
batteries, 4) Tripping harness, 5) Treadmill control panel,
6) Encoder Wheel to measure treadmill speed, 7) Treadmill.

4. EXPERIMENTAL IMPLEMENTATION
With the optimal running gait generated (Section 2.3) and

time dependent RES-CLF controller defined (Section 3.3),
we achieved sustainable robotic running. The goal of this
section is to describe the experimental setup and the control
methods adopted to realize stable running on DURUS-2D.

DURUS-2D Hardware. A popular approach for robotic
running is to utilize the spring-loaded inverted pendulum
(SLIP) model [8, 24], where the presence of springs allows for
storing energy during high speed impacts thereby improving
energy efficiency and torque performance. The previous ver-
sion of DURUS-2D [9], had rigid carbon fiber calves, unlike
the current version which has a linear spring at the end of
each aluminum calf. The spring has a stiffness of 20 000 N/m
and a damping constant of 100 N s/m. In addition, a 11.5 kg
torso is installed to resemble the human weight distribu-
tion. The positions and velocities of the torso, knee and hip
joints are measured by the attached incremental encoders.
Further, the actuated joints, knees and hips, are powered
by BLDC motors via cycloidal gear reduction, that provides
a maximum continuous torque of 200 N m. With the new
legs, DURUS-2D weights 41.7 kg. Other details about the
electrical and software system can be found in [9].

Experimental Setup. As shown in Fig. 4, DURUS-2D is
mounted on a carbon fiber boom structure which is attached
to a cage frame via a fixed one dimensional track. This setup
is used to isolate the lateral motions, leaving DURUS-2D to
move freely in the sagittal plane. Moreover, the treadmill
speed is measured by an encoder wheel and fed to the robot
as an environment feedback.

Switching logic. Guard condition is used to switch the
controller to the subsequent domain (stance or flight). In
simulation, the guard condition is triggered when non-stance
spring returns to the neutral position for stance domain,
i.e., rsp = 0. And when the nonstance foot lands on the
ground, i.e., nsfz = 0, the flight domain ends. However,
due to a lack of effective sensing mechanism, we developed
a time+state based switching logic for experiments. For a
particular domain Dv, the maximum value of time tmaxv and
phase variable τmaxv can be obtained from the gait design
process. Then the guard condition is triggered when t >
1.2tmaxv . But if t < 1.2tmaxv , the guard will be triggered if
τv(q) > τmaxv . This way, the controller can respond to the

feedback similarly to simulation while allowing for sensing
noise of the phase variable.

Experimental Controller. Motivated by the results on
ISS properties of PD controlled robotic systems in [6], we
can replace the time based IO with a time based PD control
law, and claim that the resulting system still retains desir-
able stability properties. For a robot like DURUS-2D , the
inertia of the motor (proportional to the square of the gear
ratio) coupled with relatively light legs results in stronger
ISS conditions for model based uncertainty (see [15, 6]). We
therefore pick a time+state based PD control law as follows

uE = −Kt
py
t
v −Kt

dẏ
t
v −Kpyv −Kdẏv, (42)

where Kt
p,K

t
d,Kp,Kd are constant gain matrices with ap-

propriately tuned values.

5. RESULTS
We first validate the proposed control law in simulation.

As explained in Section 2, a HZD running gait was first gen-
erated that meets all physical limitations, which assumed a
feedback linearization controller (7). Then we utilized the
time based feedback linearization + state based PD control
law given by (32) (see Section 3) in simulation, stable tra-
jectory tracking is achieved that is ultimately bounded to
the periodic orbit (see Fig. 7b for the evolution of virtual
constraints, i.e., output errors, for 100 steps, and Fig. 3a for
phase portrait that is also bounded around the desired gait)
when the phase uncertainty is bounded (Fig. 7a). However,
in experiments, noisy sensing often occurs around impact
dynamics. Therefore to simulate an unideal case, we added
a noise signal with amplitude 0.1 to τs(q) before and after
impacts (see Fig. 7c). By applying the same controller, ulti-
mate boundless was also achieved (see Fig. 7d and Fig. 3b)
and a stable bipedal running is accomplished. The running
tiles are shown in Fig. 5. These simulated results, as a proof
of concept, aligned with Theorem 2 in Section 3.3.

In reality, neither state based phase measurements τv(q),
nor time based phase calculation τv(t) is capable of pro-
ducing successful bipedal running (watch [2] for the failed
running when pure time based controller was used). How-
ever, by applying a variant of time + state based feedback as
shown by (42), a sustainable running on DURUS-2D is im-
mediately shown in real world experiments. Multiple views
in [1] show that the running is repeatable for over 150 steps.
The phase portrait for 30 steps are shown in Fig. 3c, and
the output errors are shown in Fig. 7f, both of which have
shown ultimate boundedness. Further, the time based and
state based phase variables are shown in Fig. 7e. Experi-
mental running tiles are compared to simulation at Fig. 5.
The most distinguishable feature of running, foot clearance,
is shown in Fig. 6, with the maximum clearance 13 cm, and
the flight domain takes 60% of one step. The average run-
ning speed is 1.75 m/s, and the measured average mechanical
cost of transport (MCOT) for 100 steps is 0.5287.

6. CONCLUSIONS
The high degrees of underactuation coupled with rapid

switching behaviors between two domains (stance and flight)
make bipedal running an important problem, both from a
theoretical and experimental standpoint. The success of the
demonstrated results serves two important purposes: 1) The
reliability and efficiency of the direct collocation based tra-
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Figure 5: Running tiles of simulation (top) vs. experiment (bottom) for one step.
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jectory optimization; 2) The ability of the novel phase un-
certainty to state stability criterion to construct controllers
yielding stability guarantees under sensing uncertainties. In
summary, the theoretical framework involving running gait
generation and controller design process are shown to pre-
dict and produce successful experimental running, taking an
important step toward bridging the gap between theory and
experiment. Future work will involve expanding on these
techniques to realize 3D running.
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