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Abstract— This paper presents an optimal gait synthesis
method that exploits the full body dynamics of robots using the
Hybrid Zero Dynamics (HZD) control framework and—for the
first time—experimentally realizes online HZD gait generation
for a planar underactuated robot. Hybrid zero dynamics is an
established theoretical framework that formally enables stable
control of dynamic locomotion by enforcing virtual constraints
through feedback controllers. An essential part of successfully
realizing dynamic walking with HZD framework is determining
parameters of the virtual constraints that satisfy hybrid invari-
ant condition via nonlinear constrained optimization. Due to
the complexity of the full hybrid system model of the robot,
these optimization problems often suffer from slow convergence
and local minima. In this paper, we improve the reliability
of the HZD gait optimization and significantly increase the
convergence speed by taking advantage of the direct tran-
scription formulation and the exponential convergence of the
global orthogonal collocation (a.k.a. pseudospectral) method.
As a result, generating HZD gaits online becomes feasible with
an average computation time less than 0.5 seconds, as will be
demonstrated experimentally on a bipedal robot.

I. INTRODUCTION

The goal of bipedal robots is to demonstrate dynamic and
agile locomotion that allows for navigation of terrain not
approachable by wheeled robots. Yet the ability to accommo-
date changes in terrain present in uncontrolled environments,
however, is a challenging problem. The difficulty arises from
the fact that planning dynamic motions that are consistent
with the full body dynamics of the complex robot model is
often computationally expensive. This paper presents a novel
optimization formulation which enables existing nonlinear
programming (NLP) solvers to generate dynamic gaits online
within the HZD framework, and experimentally evaluated
this method on an underactuated planar robot, DURUS-2D.

Existing methods of motion planning typically use
reduced-order models—such as the linear inverted pendulum
model (LIPM)—to mitigate the complexity of full body
dynamics. By balancing the robot about the Zero Moment
Point (ZMP), these approaches plan trajectories for the sim-
plified model and then generate the whole body motion by
conforming the robot to these analytically tractable dynamics
[12], [15]. These simplifications, however, place stringent
requirements on the design of the robot (e.g. all joints must
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Fig. 1: Experimental setup of the DURUS-2D walking on a
treadmill. The labels represents: (1) DURUS-2D robot, (2)
the control workstation, (3) the linear boom used to constrain
DURUS-2D to the saggital plane, (4) the treadmill whose
velocity is measured by an encoder attached, (5) the control
panel used to change the velocity of the treadmill.

be actuated with no significant compliance) and restrictions
on the overall locomotion capabilities of the machine (e.g.
the robot must always walk with a constant COM height).
Embracing planning and formal control that exploits the full
body dynamics of the robot is a path toward unlocking the
fully dynamic capabilities of the machine. An increasing
number of methods have been developed to generate optimal
gaits using full body dynamics optimization [13], [16]. Some
researchers also explore a middle path, in which whole
body motion is planned with the robot’s centroidal dynamics
subject to full body kinematic constraints [5]. While the
whole-body optimization methods can realize more dynamic
behaviors, the process requires excessive amount of time and
may not be able to converge reliably, and therefore, are only
suitable for off-line a priori motion planning.

Hybrid zero dynamics (HZD) [21] is a formal framework
that utilizes the full-order dynamics of the hybrid system
model by synthesizing feedback controllers that yield peri-
odic dynamic locomotion even in the presence of underac-
tuation [4], [10], [19] and multi-contact foot behaviors [22].
In the HZD framework, a set of virtual constraints enforced
via nonlinear feedback controllers, formally yielding a low-
dimensional representation of the system which captures the
stability properties of full order dynamics if the virtual con-
straints are invariant through impact. Hence the planning of



HZD gaits can be transformed into a nonlinear optimization
that determines the parameters of virtual constraints satisfy-
ing a hybrid invariance condition. However, existing methods
for generating such gaits are often time consuming, and thus
must be performed off line. While advanced control methods
[3], [9], [14] have been developed to robustify the gait under
perturbations and switch between gaits (often encoded as
motion primitives) [17], these methods are restricted to a
limited number of gaits generated in advance.

In this paper, we present an online HZD gait generation
method using the pseudospectral optimization formulation.
Exploiting the advantages of direct transcription formulation
of the pseudospectral method, we formulate the HZD gait
optimization in a fashion that makes it amendable to being
solved in a fast and reliable fashion utilizing existing NLP
solvers. More importantly, the proposed approach opens
the possibility of generating optimal gaits online while
considering the whole body dynamics of the robot. We
experimentally evaluate the performance of this method on
a planar underactuated robot which walks on a treadmill
with varying speeds. As a result, the optimizer successfully
generates gaits with different walking speeds online to enable
the robot to adjust to the changing speed of the treadmill—
this provides the first example of online HZD gait generation.

II. HYBRID ZERO DYNAMICS FRAMEWORK

This section will focus on the hybrid zero dynamics (HZD)
control framework that will be utilized to achieve stable
periodic orbits in systems with impact. The formal definitions
in this section provide the necessary structure for formulating
the fast HZD gait optimization problem.

A. Bipedal Walking as a Hybrid System

Dynamic bipedal locomotion is often modeled as a hybrid
control system in literature, wherein walking consists of an
alternating sequence of continuous and discrete events [2].
Here, we consider the robot of interest, the 5-link underac-
tuated planar robot, DURUS-2D. Let Q be the configuration
space of the robot with coordinates q ∈ Q (see Fig. 2a), the
hybrid control system is given as a tuple [2],

H C = (D,U , S,∆,FG), (1)

where D ⊆ TQ×U is an admissible domain, U ⊆ R4 is a set
of admissible controls, S ⊂ D is a guard that determines the
switching surface of discrete events, ∆ : π(S)→ π(D\S) is
a smooth reset map with π : D → TQ a canonical projection,
and FG is the affine control system defined on D, i.e., ẋ =
f(x) + g(x)u with (x, u) ∈ D and u ∈ U , where x = (q, q̇)
is the set of states. A graphic demonstration of the single-
domain hybrid system model is shown in Fig. 2b.

Continuous Dynamics. With the mass, inertia and length
properties of each link of the planar DURUS-2D model,
the constrained continuous dynamics of the system can be
determined by the classical Euler-Lagrange equation [8]:

D(q)q̈ +H(q, q̇) = Bu+ JT (q)F, (2)

a( ) Robot Coordinates b( ) Hybrid System Model

Fig. 2: Model configuration of the DURUS-2D robot.

where D(q) is the inertia matrix, H(q, q̇) = C(q, q̇)q̇+G(q)
is the vector containing the Coriolis, centrifugal and the
gravity terms, B is the actuator distribution matrix, and
F : TQ × U → R2 is a vector of ground reaction forces
that satisfy the contact conditions: η(q) = (px, pz) ≡ 0. To
maintain the ground contact, the reaction forces F should
satisfy the holonomic constraints, i.e.,

J(q)q̈ + J̇(q, q̇)q̇ = 0, (3)

with J(q) = ∂η(q)
∂q .

Domain of Admissibility. The admissible conditions of the
domain D is determined by unilateral constraints of the
system. For example, the foot contact is considered to be
a unilateral constraint. The reaction forces must satisfy the
friction cone constraints and the normal force should be
positive. In addition, the non-stance foot must be above the
ground throughout a step. We formulate these conditions in
terms of inequalities, given as

A(q, q̇, u) =

[
RF (q, q̇, u)
hnsf (q)

]
≥ 0, (4)

where R is a constant matrix capturing the friction cone and
the positive normal force constraints. Hence, the domain of
admissibility is defined as:

D = {(q, q̇, u) ∈ TQ× U |A(q, q̇, u) ≥ 0}. (5)

The guard S ⊂ D at which the discrete event occurs is
a co-dimensional one submanifold of the domain. Let h :
D → R be an appropriate element of (4) associated with the
discrete event, the guard is defined as

S = {(q, q̇, u) ∈ D|hnsf (q)(q, q̇, u) = 0, ḣnsf (q, q̇, u) < 0}.

Discrete Dynamics. A discrete event occurs when the non-
stance foot hits the ground. We assume the impact is per-
fectly plastic [11]. Configurations of the system are invariant
through the impact, i.e., q+ = Rq− with R be the relabeling
matrix that swaps the left and the right leg at every step
[2]. Post-impact velocities must satisfy the plastic impact
equation:[

D(q) −JT (q)
J(q) 0

] [
q̇+

δF

]
=

[
D(q)q̇−

0

]
, (6)

where δF are impulsive forces. Solving (6) yields the reset
map (q+, q̇+) = ∆(q−, q̇−).



Fig. 3: A periodic orbit on the Hybrid Zero Dynamics.

B. Hybrid Zero Dynamics

In the hybrid zero dynamics framework, virtual constraints
are introduced as a means to synthesize feedback controllers
that realize stable and robust locomotion in underactuated
robots. By designing virtual constraints that are invariant
through impact, an invariant submanifold is created—termed
the hybrid zero dynamics surface—wherein the evolution
of the system is dictated by the low-dimensional hybrid
dynamical system [2], [21]. The focus of this subsection is
to derive conditions under which hybrid zero dynamics can
be realized in the bipedal robot.
Virtual Constraints. Virtual constraints are defined as the
difference between the actual and the desired outputs of the
robot:

y2 = ya2 (q)− yd2(θ(q), α), (7)

where y2 is (vector) relative degree 2 by definition. In this
paper, we pick actuated joint angles as our actual outputs,

ya2 (q) = (qsk, qsh, qnsh, qnsk). (8)

Desired outputs, yd2 , are defined in terms of 5-th order Bézier
polynomials parameterized by α and θ is a strictly monotonic
state-based parameterization of time.
Feedback Controller. With the goal of driving the virtual
constraints y2 → 0 exponentially, we consider the feedback
linearzation controller [2]:

u(α,ε) = −(LgLfy2)−1(L2
fy2 + 2εLfy2 + ε2y2) (9)

with a control gain ε > 1, where Lf and Lg are Lie
derivatives. Applying this control law to the hybrid control
system in (1) results in linear output dynamics:

ÿ2 = −2εLfy2 − ε2y2. (10)

This yields a hybrid system of (1) with U = ∅, given as,

H (α,ε) = (DX , SX ,∆,F(α,ε)), (11)

where DX ⊂ TQ is an admissible domain, SX is a guard
with SX ⊂ DX , and F(α,ε) is a dynamical system defined on
DX , i.e., ẋ = f (α,ε)(x) = f(x) + g(x)u(α,ε) with x ∈ DX .
Periodic Orbit. For the hybrid system H (α,ε), let ϕt(x)

be a flow of the continuous dynamics F (α,ε) in (11). For
x∗ ∈ S, we say that ϕt(x) is hybrid periodic if there exists
a finite T > 0 such that ϕT (∆(x∗)) = x∗. A set O ⊂ DX
is a hybrid periodic orbit if O = {ϕt(∆(x∗)) : 0 < t < T}
for a hybrid periodic flow ϕt(x) (see Fig. 3). Further, x∗ is

the fixed point, if the periodic orbit O is transversal to SX

in exactly one point x∗. For the stability of periodic orbits
in the context of Lyapunov, we refer the readers to [3].
Hybrid Zero Dynamics. With the feedback control law in
(9), the zero dynamics submanifold,

Z = {(q, q̇) ∈ DX |y2 = 0, ẏ2 = 0}. (12)

is rendered invariant in the continuous domain. However, it is
not necessarily invariant through discrete dynamics without
carefully designing the virtual constraints. Therefore, if there
exist a set of parameters α so that the submanifold Z is
impact invariant, i.e.,

∆(x) ∈ Z, ∀x ∈ SX ∩ Z, (13)

then we call Z the hybrid zero dynamics surface. That is,
any solution that starts in Z remains in Z, inspite of the
impacts in Z, see Fig. 3. As a result, the behavior on this
reduced dimensional space can be used to encode the full-
order behavior of the bipedal humanoid robot. Therefore, the
goal is to find a set of parameters α that satisfies the HZD
constraints in (13). Importantly, the end result is a means of
formally encoding and realizing dynamic walking gaits.

III. ONLINE HZD GAIT OPTIMIZATION

In this paper, we employ the global orthogonal
collocation—often termed as pseudospectral methods—to
formulate a computationally fast and reliable HZD gait
optimization problem for an underactuated biped. The pseu-
dospectral methods first approximate then solve algebraic
collocation equalities at particularly collocated discrete nodes
to obtain the flow of the dynamical systems [6]. This
feature significantly reduces the computational expense of
the time-marching forward integration of system dynamics,
and hence, increases the convergence speed remarkably as
compared to existing direct shooting optimization methods
[2]. In addition, this formulation enables the use of defect
variables by which the constraint expressions can be further
simplified, so that the analytic Jacobian, even Hessian, of
the optimization problem can be determined. These methods
will form the basis for the experimental realization of online
gait generation.

A. Legendre Pseudospectral Method

The fundamental idea behind the Legendre pseudospectral
method is to approximate the solution of the dynamical
system, ẋ = f(x), by N th order Lagrange interpolating poly-
nomials which interpolate the solutions at Legendre-Gauss-
Lobatto (LGL) nodes. The LGL nodes are defined as zeros
of (τ2 − 1)L̇N (τ) distributed on the interval τ ∈ [−1, 1],
where L̇N (τ) is the derivative of the N th order Legendre
polynomial LN (τ) [7]. Let xi = (qi, q̇i) be approximated
states at node τi with i ∈ [0, N ], then the solution x(τ) on
τ ∈ [−1, 1] is approximated by

x(τ) ≈ x̄(τ) =

N∑
i=0

xiφi(τ) (14)



where φi(τ) = 1
N(N+1)LN (τi)

(τ2−1)L̇N (τ)
τ−τi is the Lagrange

interpolating polynomial of order N . It can be noted that
φi(τk) = 1, if i = k and φi(τk) = 0 if i 6= k. Similarly,
the derivative of x(τ) is approximated by differentiating the
approximation x̄(τ) in (14). Interestingly, the derivative of
φi(τk) at any LGL node τk is a constant determined only by
i and k [18]. This feature leads to the LGL differentiation
matrix DLGL ∈ R(N+1)×(N+1). Let DLGL

ki = φ̇i(τk) be the
(k, i) entry of the differentiation matrix, we have

DLGL
ki =


LN (τi)

LN (τk)(τi−τk) , if i 6= k,

−N(N+1)
4 , if i = k = 0,

N(N+1)
4 , if i = k = N,

0, otherwise.

(15)

The collocation condition is defined such that at all LGL
nodes the approximated derivatives, ˙̄x(τk), equal to the
derivatives that are computed from the system dynamics,
f(x(τk)). In other words, the NLP solver is set to find a
set of discrete states X = [xT0 xT1 · · ·xTN ]T that satisfy the
constraints given by

(DLGL ⊗ I)X− F[X] = 0, (16)

where ⊗ represents the Kronecker products, I is an identity
matrix, and F[X] = [f(x0)T f(x1)T · · · f(xN )T ]T . Differ-
ent from the standard collocation schemes, the pseudospec-
tral method provides an approximation of the solution that
has exponential convergence (as a rate of the number of LGL
nodes) to the smooth solution [18].

More importantly, by expressing the forward integration
with closed-form equality constraints, the pseudospectral
method enables the introduction of defect variables to ex-
pedite the problem evaluation even faster. Defect variables
are supplementary decision variables that could be computed
in closed-form initially. For instance, instead of computing
ẋ in (16) from the dynamical equations we introduce the
derivatives as augmented NLP decision variables and then
enforce the dynamical equations as equality constraints of
x and ẋ. It would decouple the complex constraints into
multiple simpler constraints, as a result, significantly sim-
plifies the constraint expression such that determining the
analytical Jacobian of constraints becomes feasible [10]. In
nonlinear programming problems, providing analytical Jaco-
bian of constraints would significantly increase the compu-
tation speed and improve the robustness of the optimization
convergence.

B. Fast HZD Gait Optimization

The goal of the HZD gait optimization is to find an optimal
periodic orbit on the hybrid zero dynamics surface that is
determined by virtual constraints parameters α. Here, we
construct the problem based on the pseudospectral method
described in the previous section.

Let 0 = t0 < t1 < · · · < tN = T be the time points
correspond to N th order LGL nodes, where T is the period of
the periodic orbit. Let qk, q̇k, q̈k, uk, and Fk are the discrete
joint angles, velocities, and acceleration, control inputs and

ground reaction forces needed to be determined by the NLP
solver at each node tk. With the introduction of these defect
variables, the collocation constraints in (16) becomes:

(DLGL ⊗ I)X− T

2
Ẋ = 0, (C1)

where the T
2 is due to the affine transformation of the time

[7]: t = T
2 (τ + 1). To guarantee that ẋk indeed satisfies the

closed-loop dynamics, here we use the approach described
in [10]. Specifically, the constrained Lagrangian dynamics
equation in (2), holonomic constraints in (3), and output
dynamics in (10) are imposed to equivalently (and fully)
represent the closed loop dynamics f (α,ε)(x). Thus, we have
following equalities:

D(qk)q̈k +H(qk, q̇k)−Buk − JT (qk)Fk = 0, (C2)

J(qk)q̈k + J̇(qk, q̇k)q̇k = 0, (C3)

ÿ2(qk, q̇k, q̈k, α) + 2εẏ2(qk, q̇k, α) + ε2y2(qk, α) = 0, (C4)

for all k ∈ {0, 1, . . . , N}. It can be noted that the holonomic
constraints in (C3) determines the constraint wrenches when
coupled with (C2), and (C4) determines uk implicitly without
the explicit calculation of the feedback control law given in
(9). The result is a set of smooth control inputs that drives
y2 → 0 given ε > 0.

In addition, the solution should always lies on the specified
admissible domain manifold and xN ∈ S. Hence, we enforce

A(xk, uk, Fk) ≥ 0, ∀k ∈ {0, 1, . . . , N}, (C5)

h(xN ) = 0, ḣ(xN ) < 0 (C6)

Note that the constraints (C5) now can be stated directly in
terms of Fk, resulted in much simpler expressions.

To make sure the solution is periodic, we enforce equality
constraints between states at the first and last node that
satisfy the rigid impact equation given in (6), i.e.,

q0 −RqN = 0, (C7)
J(q0)Rq̇0 = 0, (C8)

D(q0)(q̇0 −Rq̇N )− JT (q0)δF = 0. (C9)

Moreover, the hybrid invariance constraints can be directly
imposed on the states at the first node.

y2(q0, α0) = 0, (C10)
ẏ2(q0, q̇0, α0) = 0. (C11)

Finally, the contact constraints must equal the desired con-
stants (for DURUS-2D walking, the constants are zero):

η(q0) = 0 (C12)

The constraints defined in (C1)–(C12) place the necessary
requirements for the HZD gait optimization. With simpler
constraints thanks to the defect variables, we are able to
rigorously compute analytic expressions of the gradient of
the cost function and the Jacobian of the constraints, even
the Hessian of the optimization problem, using any proper
symbolic mathematics software. The end result is a fast
and reliably converging nonlinear programming problem for
generating dynamic walking gaits for the DURUS-2D robot
within the hybrid zero dynamics framework.



IV. SPEED REGULATION VIA ONLINE OPTIMAL GAIT
GENERATION

In this section, we employ the gait generation formulation
to design optimal gaits online. In particular, we optimize new
HZD gaits subject to a specific desired forward velocity that
changes when the robot is still walking, and apply the newly
optimized gait parameters α∗ to change the walking velocity
of the robot in real time.
Objective Oriented Constraints. We start with formulat-
ing objective oriented (OC) constraints for this particular
purpose. For periodic walking gaits, the distance travelled
during a step equals the step length of the gait. Let v̄d be
the desired forward speed of the robot, the optimized gait
should satisfy the following condition:

‖Lstep(qN )

T
− v̄d‖ ≤ δ (OC1)

for a small constant δ > 0, where Lstep(qN ) = pxnsf (qN )
is the step length and pxnsf (q) is the x-position of the non-
stance foot. With a goal to apply optimized gaits to the robot
hardware on the fly, additional constraints must be enforced
so that the resulting gaits are reasonable and feasible from the
viewpoint of the actual hardware. In particular, we consider
the following constraints.

• The torso should move within a reasonable range, i.e.,
given qtor(q) = −qsf − qsk − qsh,

qmin
tor ≤ qtor(q) ≤ qmax

tor . (OC2)

• There should be enough swing foot clearance to prevent
scuffing, Hence we constrain that the non-stance foot is
always above a predetermined curve:

hnsf (q)− hdnsf (q) ≥ 0, (OC3)

where hdnsf (q) is the desired foot clearance curve.
• The joint velocities and actuator torques must be within

the specifications of the motors:

−q̇max ≤ q̇≤ q̇max, (OC4)
−umax ≤ u≤ umax. (OC5)

Energy Efficient Gait Optimization. With a goal of achiev-
ing energy efficient locomotion at a specific speed, the cost
function of the NLP is defined as the mechanical cost of
transport of the gait, given as:

Φ :=
1

mgLstep(qN )

N∑
k=0

wkP (uk, q̇k) (17)

where wk are the LGL weights given by

wk =
2

N(N + 1)

1

LN (τk)]2
, (18)

and P (u, q̇) is the total power of the actuated joints:

P (u, q̇) = ‖u ◦ (BT q̇)‖2. (19)

Let Z = {α, T,Z , δF} be the set of augmented decision
variables, where Z = {(qk, q̇k, q̈k, uk, Fk) : 0 ≤ k ≤ N},

and C(Z) as a vector of constraints given in (C1)–(C12)
and (OC1)–(OC5), we state the speed regulated HZD gait
optimization problem as,

Z∗ = argmin
Z

Φ(Z) (20)

s.t Cmin ≤ C(Z)≤ Cmax

Zmin ≤ Z ≤ Zmax

This HZD gait generation NLP is then solved using IPOPT
with linear solver ma57 [20].

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results of the
online speed regulation optimization that we have proposed
in the previous section.

Experimental Setup. As shown by Fig. 1, the boom is
mounted on the cage along with the robot. The boom
constraints the robot motion to the lateral plane (front-back
and up-down motions only). The boom structure is freely
allowed to slide on the cage in order to ensure that the robot
motion is not restricted in its general direction of walking.
The off board processing unit is connected to the joint drives
via ETHERCAT. The desired joint angles and velocities are
generated by the off board processing unit in real time using
the optimal gait parameters α∗ from the gait optimization,
and sent to the local controller at the rate of 1 kHz. The
treadmill speed is changed from its control panel, while the
actual speed is measured by an encoder and the readings are
updated and sent to the off board unit at the same rate.

To begin with, we use the exact same optimization formu-
lation to generate a nominal gait offline. The desired walking
speed of the nominal gait is chosen to be 0.65 m/s. The
offline optimization that seeded with random initial guesses
converges to an optimal solution successfully with an average
CPU time of 9.5 seconds. The optimization results presented
in this paper are obtained by running IPOPT on a laptop
computer with an Intel Core i7-3820QM processor (2.7 GHz)
and 12 GB of RAM. In particular, no parallel computation
is enabled in all tests.

Performance of Online Optimization. The measured tread-
mill speed serves as the desired speed v̄d in (20) and is
published to a ROS message at the beginning of every step.
Once the online gait optimizer, which runs on the same
laptop computer, receives a new message from the ROS
message, the optimizer runs a new optimization subject to
the new desired walking speed if the difference between the
updated speed and previously optimized speed is greater than
a certain threshold. In particular, we pick both the threshold
and the δ in (OC1) to be 0.01. Once the optimization
converges, new gait parameters are sent to the off board
processing unit immediately and applied to the gait controller
at the beginning of the next robotic step. For the experimental
results reported in this paper, we started from the nominal
gait and then changed the treadmill speed from its control
panel within a range from 0.43 m/s to 0.97 m/s. The
treadmill speed was slowed down and speeded up multiple
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Fig. 5: The histogram plots of total 198 gait optimizations.

times, as the blue line shown in Fig. 4. The dashed red line
in Fig. 4 showed that the online optimizer generates new
gaits that closely tracked the desired walking speed.

In order to achieve faster convergence, we enabled the
warm start feature of the optimizer in IPOPT where we
used the result from the previous optimization as the initial
guess of the next optimization. Further we provided the exact
Hessian of the problem using the analytical second order
derivatives of constraints and cost function instead of the
Quasi-Newton approximation of the Hessian. By doing so,
the optimizations converged faster and more reliably. Fig. 6
shows the histogram figures of the CPU time spent and
total number of iterations of each optimization. The average
CPU time spent of the total 198 gait optimizations during
the experiment of 328 seconds is 0.4964 second, which
is less than the average time of one step. There are only
two occasions when the optimizer ran more than 2 seconds.
Furthermore, the online optimizer converged successfully to
an optimal solution in all occurrences within the maximum
allowed iterations of 100. In fact, the average number of
iterations is just 13 with the maximum being 67. The video
demonstration of the experiment can be found in [1].

The performances of the online gait optimization when
providing the exact and Quasi-Newton approximation of the
Hessian are also studied. The comparison results are shown
in Table I, in which the optimizer spent more time and re-
quired more iterations to converge. Further, in 50 of total 198
occurrences when using the Quasi-Newton approximation,
the optimization stalled at an almost feasible solution, which
is indicated as the “Restoration Failed” in IPOPT

TABLE I: Performance comparison of online gait optimiza-
tion with different approaches to computing the Hessian.

Method CPU Time (sec) NO. of Iteration
Average Std. Average Std.

Exact Hessian 0.4954 0.3997 13.1414 10.13
Quasi-Newton 0.8927 0.8749 44.5657 36.60
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gaits at different walking speeds generated by the online
optimizer. The blue lines with red circles show the desired
outputs of the nominal gait.
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Fig. 7: Phase portraits of optimal gaits at different walking
speeds generated by the online optimizer. The color bar
indicates the speed of the gaits, where darker lines represent
slower speeds and lighter lines represent faster speeds.

outputs [20]. These failures do not occur when we were using
the exact Hessian for the problem.

Gait Performance. With the proper objective-orientated
constraints presented in Sec. IV, all gaits generated from the
online optimizer are physically realizable on the DURUS-2D
hardware. Fig. 8 shows the snapshots of the gaits during the
speed regulated walking experiment. Fig. 6 shows the range
of desired outputs of all gaits generated. These gray areas



Fig. 8: Snapshots of optimal gaits generated from the online optimizer at different walking speeds.

are then compared to the desired outputs of the nominal gait,
which shows very good similarities. Fig. 7 shows the phase
portraits of robot joints for all gaits generated, where darker
lines represent the slower gaits and lighter lines represent the
faster gaits. It can be noted that each gait produces periodic
orbits for the robot joints. Also, the size of the orbits is
expanded when the speed of the robot is increased, which
shows that the optimizer generated gaits with faster joint
velocities and wider joints movements as the speed increased.

VI. CONCLUSION

This paper presented an online gait optimization approach
for generating dynamic locomotion on an underactuated
robot under the hybrid zero dynamics framework. Build-
ing upon the theoretical foundation of HZD, this method
optimizes the interactions of the full body dynamics of
the hybrid system model. More importantly, the utilization
of the state-of-the-art pseudospectral method empowers a
fast and reliable gait optimization method which is, for
the first time, capable of generating HZD gaits online. We
experimentally validated the optimization method on a planar
5-link underactuated robot subjecting to varying desired
walking speeds. The online full body dynamics optimizer
successfully optimized energy-efficient walking gaits in an
average of 0.5 seconds, while satisfying all dynamical and
kinematics constraints.
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