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Abstract— This work presents human-inspired control strate-
gies required for achieving three motion primitives in walking—
flat-ground, uneven terrain and up-slope—in an underactuated
physical bipedal robot: AMBER. Formal models and controllers
which provably guarantee the stability of walking are developed
and verified in the simulation. Computationally tractable condi-
tions are given that allow for the experimental implementation
of these formal methods through the closed form approximation
of constraints that restrict maximum torque, maximum velocity
and ensure proper foot clearance. Considering the special
property of the motors used in the robot, i.e., low leakage
inductance and high angular speed, we approximate the motor
model and translate the formal controllers satisfying these
constraints into an efficient voltage-based controller that can
be directly implemented on AMBER. The end result is robotic
walking on AMBER for the three motion primitives that shows
good agreement with the formal results from which it was
derived.

I. INTRODUCTION

Humans are exceptional at adapting their walking gait
based on the nature of terrain; this enables them to navigate
varieties of locations with ease. Hence to achieve bipedal
robotic walking which can display various motion primitives,
i.e., walking on flat-ground, slopes, stairs and uneven terrain,
it is natural to look to human-data for inspiration in the de-
sign of formal controllers. In addition, despite the complexity
present in the human locomotion system, there is evidence
to suggest that humans appear to be controlled (at least in
part) by central pattern generators in the spinal cord [8]. This
implies that humans may employ potentially characterizable
control strategies and the proper representation of human
walking can be obtained by studying human walking data.

Motivated by these considerations, recent work by the
authors [2], [3], [4] have looked to human walking data to
compute outputs that appear to characterize human walking
behaviors which can be described by simple functions of
time, termed the canonical walking function, that gives
intuition into these behaviors. Using these constructions, a
controller can be implemented that drives the outputs of the
robot to the outputs of the human as represented by the
canonical walking function. These ideas were formally ex-
plored in the case of underactuated bipedal robotic walking,
where a human-inspired optimization problem was presented
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Fig. 1: The biped AMBER (left), the angle conventions
(center), and the SolidWorks model of AMBER (right).

(in [3]) that provably resulted in robotic walking on flat
ground (in [15]) with the bipedal robot AMBER.

The main contribution of this paper is to design exper-
imentally realizable control laws to achieve walking with
AMBER (Fig. 1) for three different kinds of motion primi-
tives: flat-ground, rough terrain and up-slope. We begin by
introducing a formal model of AMBER, including both its
mechanical and electrical components in Sect. II; the fidelity
of this model is essential for predicting experimental behav-
ior through simulation. The construction of human-inspired
controllers is then presented in Sect. III, along with the
human output data that motivated this construction. The main
formal result of this paper is presented in Sect. IV: additional
constraints to the human-inspired optimization (which are
computationally efficient) that will allow the formal results
from [3] to be realized experimentally, for different walking
behaviors, in a robust fashion. The experimental results are
presented in Sect. IV, where we define a voltage-based
proportional control law–utilizing only the human outputs
and the canonical walking function with parameters obtained
from the human-inspired optimization–for which we obtain
walking in simulation for all three motion primitives. Good
agreement between the simulation and experimentation is
seen, indicating that the formal ideas presented can be
successfully translated to real-world implementation.

It is important to note that this work has drawn inspiration
from work related to: creating low-dimensional representa-
tions of human walking through virtual constraints [6], [13];
representations of bipedal robots that attempt to find the
underlying simplicity in walking such as single-leg hoppers
[12]; the Spring Loaded Inverted Pendulum (SLIP) models
[7], [11] for running robots; finally, and most importantly,
work that uses virtual constraints and hybrid dynamics to
achieve low-dimensional representations of robotic walking
[9], [14] that can be realized experimentally [10].



II. BIPEDAL ROBOTIC MODEL

AMBER is a 2D bipedal robot with five links (two calves,
two thighs and a torso, see Fig. 2). AMBER is 61 cm tall
with a total mass of 3.3 kg (see Fig. 2). While the knees and
hips are powered by DC motors, the feet are pointed; and
thus are underactuated. AMBER walks in the sagittal plane
and its movement in the coronal plane is restricted by the
boom (see Fig. 2). In addition, the whole robot ambulates
on a treadmill. In this manner, we can also achieve slope
walking by just changing the slope (γ) of the treadmill.

Define the configuration space Q with θ =
(θs f .θsk,θsh,θnsh,θnsk)

T ∈ Q containing the relative angles
between links as shown in Fig. 1. When the foot hits
the ground, the stance and non-stance legs are swapped.
Formally, we represent the robot as a hybrid system (see
[2], [3] for details) indexed by ground slope γ:

H C γ = (Xγ ,U,Sγ ,∆, f ,g), (1)

where Xγ ⊂ T Q is the domain, U ⊂R4 is the set of admissible
controls, Sγ ⊂ Xγ is the guard, and ∆ is the reset map.
( f (x),g(x)) forms a control system, i.e., ẋ = f (x)+g(x)u.
Continuous Dynamics. Calculating the inertial properties
of each link of the robot (Fig. 1) yields the Lagrangian,
L(θ , θ̇) = 1

2 θ̇ T D(θ)θ̇ −V (θ). The inertias of the motors
and boom are also included. Let Ir, Ig, Im be the rotational
inertias of the rotor, gearbox, and motor, respectively. Then,
Im = Irr2 + Ig, where r = 157 is the gear ratio. Because r is
large, Ig can be ignored. Each joint is connected to a motor
through a metal chain. Therefore, the axis of rotation of the
rotor has an offset w.r.t. that of the link. Using the parallel
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Model Parameters
Parameter Mass Length Inertia x-axis Inertia z-axis

g mm ×103 g mm2 ×103 g mm2

Stance calf 213.79 312.27 1967.37 119.69
Stance knee 606.15 282.37 6494.94 418.37

Torso 804.83 9.97 3730.23 3577.19
Non-stance knee 606.15 282.37 6494.94 418.37
Non-stance calf 213.79 312.37 1967.37 119.69

Fig. 2: Amber Experimental Setup. Parts marked are (1): NI
cRIO, (2): Maxon DC Motors located in the calf and the
torso, (3): Encoders on boom and the joints, (4): Contact
switch at the end of the foot, (5): Boom, (6): Wiring with
sheath protection, (7): Slider for restricting the motion to the
sagittal plane. The table contains the properties of each link.

axis theorem: Ip = Im +mmd2
m, where Ip is the motor inertia

shifted to the joint axis, mm is the mass of the rotating motor
parts, and dm is the distance between axes. Again, since
mm = 0.011 kg, Ip ≈ Im.

The boom is rigidly bolted to the sliders and thus does not
rotate w.r.t. the world frame. Therefore, only the translational
inertia of the boom is considered. Let mx (resp. mz) denote
the mass of the parts in the boom-slider moving forward and
backward (resp. upward and downward). Then, the resulting
mass matrix is Mboom ∈ R6×6 where (Mboom)1,1 = mx and
(Mboom)3,3 = mz with all other entries equal to zero. The
combined inertia matrix, Dcom, used in the Lagrangian is

Dcom(θ) = D(θ)+diag(0, Im,sk, Im,sh, Im,nsh, Im,nsk)

+J(θ)T MboomJ(θ), (2)

where Im,sk, Im,sh, Im,nsh, Im,nsk represent the motor inertias of
the links and J(θ) is the body Jacobian of the torso center of
mass. The Euler-Lagrange equation yields a dynamic model:

Dcom(θ)θ̈ +H(θ , θ̇) = B(θ)u, (3)

where the control, u, is a vector of torque inputs. Since
AMBER has DC motors, we need to derive equations with
voltage inputs. Since the motor inductances are small, we
can realize the electromechanical system:

Vin = Raia +Kω ω, (4)

where Vin is the vector of voltage inputs to the motors,
ia is the vector of currents through the motors, and Ra
is the resistance matrix. Since the motors are individually
controlled, Ra is a diagonal matrix. Kω is the motor constant
matrix and ω is a vector of angular velocities of the motors.
Representing (4) in terms of currents, the applied torque
is u = Kϕ R−1

a (Vin − Kω ω), with Kϕ the torque constant
matrix. Thus, the Euler-Lagrange equation takes the form
Dcom(θ)θ̈ +H(θ , θ̇) = B(θ)Kϕ R−1

a (Vin−Kω ω).
Converting this model to first order ODEs yields the affine

control system ( fv,gv) with inputs Vin:

fv(θ , θ̇) =

[
θ̇

−D−1
com(θ)(H(θ , θ̇)+B(θ)Kϕ R−1

a Kω ω)

]
,

gv(θ) =

[
0

D−1
com(θ)B(θ)Kϕ R−1

a

]
. (5)

Discrete Dynamics. The domain, Xγ , describes the allowable
state space restricted by the guard, hγ . For AMBER, the non-
stance foot must be above a slope of γ , i.e., hγ ≥ 0:

Xγ =
{
(θ , θ̇) ∈ T Q : hγ(θ)≥ 0

}
,

The guard is just the boundary of the domain with the
additional assumption that hγ is decreasing:

Sγ =
{
(θ , θ̇) ∈ T Q : hγ(θ) = 0 and dhγ(θ)θ̇ < 0

}
,

with dhγ(θ) the Jacobian of hγ at θ . When the non-stance
foot impacts the ground, the angular velocities change. Hence
we define a reset map, ∆ : Sγ→Xγ which maps the pre-impact
state to the post-impact state; see [2] for details.



III. HUMAN-INSPIRED CONTROL

This section reviews human-inspired control so as to
properly frame the formal results that are utilized to experi-
mentally achieve robotic walking. Specifically, we review the
formal results from [3] (also see [2], [4] for related results in
the case of full actuation), that will be coupled with a novel
method to ensure the practical realizability of these results.

Human Outputs and Walking Functions. Since our ap-
proach toward achieving walking is inspired by the way
humans walk, we begin by considering data from human
walking experiments (see [2], [4] for details). Rather than
looking to the joint angles of the humans over time as is
traditionally done [13], we seek “outputs” of the human
that provide a “low-dimensional” representation of human
walking. Five outputs are used in this paper: δ phip(θ), the
linearized position of the hip, mnsl , the linearized slope of
the non-stance leg, θsk, the stance knee angle, θnsk, the non-
stance knee angle, and θtor(θ), the torso angle from vertical.
These outputs are shown in Fig. 3. See [4] for more details.

We make the following observations from the human data:
The linearized position of the hip is a linear function of time.

δ pd
hip(t,v) = vhipt, (6)

The other outputs appear to act like the time solution
to linear mass-spring-damper systems which motivates the
introduction of the canonical walking function (CWF):

yH(t,α) = e−α1t(α2 cos(α3t)+α4 sin(α3t))+α5, (7)

with α1 = c0, α2 = ωd , α3 = c1, α4 = ζ ωn and α5 = g, with
damping ratio ζ , natural frequency ωn, and damped natural
frequency ωd =ωn

√
1−ζ 2, and c0 and c1 found from initial

conditions, and g a gravity-related constant. This function
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(a) Linear Hip Position
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(c) Stance Knee
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(d) Non-stance Knee

Fig. 3: Human output data and the corresponding canonical
walking function fits (black) compared against the simulated
(red) and experimental (blue) robotic walking.

has the capacity to represent humanlike walking. This is the
essence of Human-Inspired Control.
Human-Inspired Outputs. Having defined the outputs, the
goal will be to construct a controller that drives the outputs
of the robot to the outputs of the human, as represented by
the CWF: ya(θ(t))→ yd(t,α), with:

yd(t,α) = [yH(t,αnsl),yH(t,αsk),yH(t,αnsk),yH(t,αtor)]
T ,

ya(θ) = [δmnsl(θ),θsk,θnsk,θtor(θ)]
T ,

where yH(t,αi), i ∈ {nsl,sk,nsk, tor} is the CWF (7) but
with parameters αi specific to the output being considered.
Grouping these parameters with the velocity of the hip,
vhip, that appears in (6), results in the vector of parameters
α = (vhip,αnsl ,αsk,αnsk,αtor) ∈ R21.

In order to remove the dependence of time in yd(t,α) we
introduce a parameterization based upon the fact that the
(linearized) position of the hip is accurately described by a
linear function of time:

τ(θ) = (δ pR
hip(θ)−δ pR

hip(θ
+))/vhip, (8)

where δ pR
hip(θ

+) is the linearized position of the hip at the
beginning of a step. θ+ is the configuration where the height
of the non-stance foot is zero, i.e., hγ(θ

+) = 0. Using (8),
we define the following human-inspired output:

yα(θ) = ya(θ)− yd(τ(θ),α). (9)

Control Law Construction. Consider again the affine con-
trol system ( f ,g) associated with (1). The outputs were cho-
sen so that the decoupling matrix, A(θ , θ̇) = LgL f yα(θ , θ̇)
with L the Lie derivative, is nonsingular. Therefore, the
outputs have (vector) relative degree 2 and we can define
the following torque controller:

u(α,ε)(θ , θ̇) = (10)

−A−1(θ , θ̇)
(
L2

f yα(θ , θ̇)+2εL f yα(θ , θ̇)+ ε
2yα(θ)

)
.

In other words, we can apply feedback linearization to
obtain the linear system on the human-inspired output: ÿα =
−2ε ẏα−ε2yα . This system is exponentially stable, implying
that for ε > 0 the control law u(α,ε) drives yα → 0 as t→∞.
Applying the feedback control law in (10) to the hybrid
control system, H C as given in (1), yields a hybrid system:

H
(α,ε)

γ = (Xγ ,Sγ ,∆, f (α,ε)), (11)

where, Xγ , Sγ , and ∆ are defined as for H C γ , and

f (α,ε)(θ , θ̇) = f (θ , θ̇)+g(θ , θ̇)u(α,ε)(θ , θ̇).

Human-Inspired Hybrid Zero Dynamics The controller
(10) drives ya→ yd , or it renders the zero dynamics surface:

Zα = {(θ , θ̇) ∈ T Q : yα(θ) = 0, L f yα(θ , θ̇) = 0} (12)

invariant for the continuous dynamics. But, the discrete
impacts in the system cause the state to be “thrown off”
of the zero dynamics surface. Therefore, a hybrid system
has hybrid zero dynamics if the zero dynamics is invariant
through impact: ∆(Sγ ∩Zα)⊂ Zα . With the goal of restating



this in a way that is independent of state variables (position
and velocity), we can use the outputs and guard to explicitly
solve for the configuration of the system ϑ(α) ∈ Q on the
guard in terms of the parameters, α . In particular, let

ϑ(α) = θ s.t
[

yα(∆θ θ)
hγ(θ)

]
=

[
0
0

]
, (13)

ϑ̇(α) =

[
dδ pR

hip(ϑ(α))

dyα(ϑ(α))

]−1 [
vhip
0

]
,

where ∆θ is the relabeling matrix and dδ pR
hip(θ) and dyα(θ)

the Jacobian of δ phip and yα , respectively. It follows that
(ϑ(α), ϑ̇(α)) ∈ Zα ∩S and δ ṗR

hip(ϑ(α), ϑ̇(α)) = vhip.

IV. HUMAN-INSPIRED OPTIMIZATION

We now present the main formal result (originally in-
troduced in [3], [2], [4]) that will be used to generate the
control parameters that will be experimentally implemented
on AMBER to obtain robotic walking.
Optimization Theorem. We need to determine the param-
eters α∗ for the CWF yH(t,αi), i ∈ {nsl,sk,nsk, tor}, which
give the best fit to the human mean walking data. This calls
for defining a cost function, CostHD(α), which is the sum of
squared errors between the human data and the CWF picked
over a set of discrete times (see [2]). Accordingly, we can
compute the least squares fit of the mean human output data
with the CWF:

α
∗ = argmin

α∈R21
CostHD(α) (14)

While this provides an α∗ that yields a good fit of the
human data (see Fig. 3), these parameters will not result
in robotic walking due to the differences between AMBER
and humans. Therefore, the goal is to determine these pa-
rameters which provide the best fit of the human data while
simultaneously guaranteeing stable walking in the robot. This
motivates the following theorem (which first appeared in [3]):

Theorem 1: The parameters α∗ solving the constrained
optimization problem:

α
∗ = argmin

α∈R21
CostHD(α) (15)

s.t yα(ϑ(α)) = 0 (C1)

dyα(∆θ ϑ(α))∆
θ̇
(ϑ(α))ϑ̇(α) = 0 (C2)

dh(ϑ(α))ϑ̇(α)< 0 (C3)
DZ(ϑ(α))< 0 (C4)
0 < ∆Z(ϑ(α))< 1 (C5)

yield hybrid zero dynamics: ∆(Sγ ∩Zα∗) ⊂ Zα∗ . Moreover,
there exists an ε̂ > 0 such that for all ε > ε̂ the hybrid
system H

(α∗,ε)
γ has a stable periodic orbit with fixed point

(θ ∗, θ̇ ∗) ∈ S∩Zα∗ that can be explicitly computed.
It is not possible to explain this theorem in detail, but

one can be found in [3], [15]. Of particular importance is
the point (ϑ(α), ϑ̇(α)) ∈ S∩Zα which is used to ensure
hybrid zero dynamics through (C1)-(C3), and guarantees the
existence of a stable periodic orbit in the zero dynamics

surface through (C4) and (C5) which implies the existence
of a stable walking gait for sufficiently large ε .
Constraints for Experimental Realizability. The walking
that we achieve using Theorem 1 should be physically realiz-
able, which necessitates the additional constraints that ensure
that the resulting control parameters will experimentally re-
sult in walking with AMBER such as foot height, maximum
velocity and peak torque constraints. One could directly
introduce these constraints, but computing them would then
require directly integrating the systems dynamics. This is
prohibitive, since when designing walking gaits for the robot
the optimization cannot be run just once, but rather must
be run thousands of times to find the best, most physically
realizable, walking gaits. Therefore, a way of approximately
enforcing physical realizability constraints, in closed form,
is highly desirable.

The method we utilize is based upon the fact that the
conditions in Theorem 1 also imply the existence of a stable
walking for fully actuated walking for which (ϑ(α), ϑ̇(α))
converges to the fixed point of the associated exponentially
stable periodic orbit as ε → ∞ [4]. In addition, since fully
actuated walking directly controls the velocity of the hip,
τ(θ)→ t as ε→∞ which implies that τ(ϑ(α))→ T with T
the period of a step.

Define ξ1 = δ pR
hip(θ) and ξ2 = δ ṗR

hip(θ , θ̇). Note that we
can write ξ1 = cθ and ya(θ) = Hθ . In addition, due to the
form of τ(θ), we can write yd(τ(θ),α) = yd(ξ1,α). This
allows us to define:

Φ(ξ1,α) :=
[

c
H

]−1 [
ξ1

yd(ξ1,α)

]
(16)

Ψ(ξ1,α) :=
[

c
H

]−1
[

1
∂yd(ξ1,α)

∂ξ1

]
(17)

With the assumption that τ(θ) = t, it follows that:

ξ
e
1 (t) := vhipt +δ pR

hip(∆θ ϑ(α)), ξ
e
2 (t) := vhip (18)

From which we define our approximate solutions:

θ
e(t,α) = Φ(ξ e

1 (t),α), θ̇
e(t,α) = Ψ(ξ e

1 (t),α)ξ e
2 (t). (19)

Note that in the case of full actuation, it is fairly easy to
prove that this solution converges to the actual solution of
the system. Therefore, viewing the fully actuated walking
that is implied by Theorem 1 as an “approximation” of the
underactuated walking (which is actually a good approxi-
mation since there they will have the same configuration at
foot strike) we define the following “practical” and easily
computable constraints:
(C6): Foot scuffing prevention: The height of the non-stance
foot at any point of time, must be such that it is greater than
a quadratic polynomial, P(θ):

max
0≤t≤τ(ϑ(α))

(hR(θ
e(t,α))−P(θ e(t,α)))> 0

where P(θ) = ax f (θ)
2 +bx f (θ)+ c with x f (θ) is the hori-

zontal position of the swing foot w.r.t the stance foot and a=
− 4hmax

SL(α)2 ,b = 4hmaxSL(α)
SL(α)2 ,c = − 4hmaxx f (ϑ(α))x f (∆(ϑ(α)))

SL(α)2 , where



SL(α) = x f (ϑ(α))− x f (∆(ϑ(α))) is the step length of the
robot, computed from α through ϑ(α). These constants,
therefore, can be adjusted based on the required maximum
stance foot height, hmax, and step length, SL(α).
(C7): Peak torque: The maximum torque delivered by the
motors is limited (2Nm for AMBER). Therefore, the peak
torque required during a walking gait must be:

max
0≤t≤τ(ϑ(α))

‖u(α,ε)(θ
e(t,α), θ̇ e(t,α)))‖∞ < umax

with u(α,ε), dependent on the parameters α and ε , given in
(10) and umax the maximum torque of the motors.
(C8): Hip-Velocity: The desired hip velocity of the biped
is constrained within the limits: vmin < vhip < vmax. For
AMBER, vmin = 0.1m/s and vmax = 0.6m/s.
(C9): Angular velocities of joints: The maximum angular
velocities are limited by the motors (6.5rad/s):

max
0≤t≤τ(ϑ(α))

‖θ̇ e(t,α)‖∞ < θ̇max

V. IMPLEMENTATION AND EXPERIMENT
The human-inspired torque control proposed in the previ-

ous section requires us to linearize the dynamics of AMBER
through model inversion. This is not only memory intensive,
but also computationally demanding. Therefore, we decided
to adopt a simple proportional control law (a similar idea was
used in [5]) on the outputs and provide the control input in
the form of voltage, since the actuators are electric motors.
This also becomes very convenient considering the fact that
a DC motor “almost” behaves like a linear system; and the
inertia of the motor is large when compared to that of its
corresponding link (approximately 10 times).
Human-Inspired Voltage Control. Let Vin be the vector of
voltage inputs to the motors. Define the following human-
inspired proportional (P) voltage control law:

Vin = −Kpyα(θ), (20)

where Kp is the constant matrix with its diagonal entries
being the proportional gains for each of the motors and its
non-diagonal entries are zero since the motors are controlled
independently. This control law can be applied to the control
system defined by (5) modeling the bipedal robot in conjunc-
tion with the motors. It is important to note that the order of
the voltage inputs in (20) is considered in such a way that
each motor directly represents the output it is “intuitively”
driving. For example, it is evident that stance-knee voltage,
Vsk, has direct control over the stance-knee angle and no
direct control over the non-stance knee angle. Thus, the order
was chosen in such a way that each output was controllable
by its corresponding assigned voltage.

Since flat-ground walking can be directly translated to
walking obtained in [15] by just substituting γ = 0, we
are going to omit it and progress to the other two motion-
primitives. Nevertheless, tiles and figures of walking on flat
ground (Fig. 6a and Fig. 5) are shown for comparison.
Rough terrain walking: In order to verify the robustness
of the walking obtained from the flat-ground optimization
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Fig. 4: Phase portraits for the walking gaits found in sim-
ulation for up-slope walking with voltage control (left) and
flat-ground walking on uneven terrain (right).

i.e., by implementing P-control using α∗, we make the
biped walk on rough terrain with a change of 1.94 cm in
terrain height. To determine a priori the response of the
robot to such disturbances, we simulated walking with a
1.94 cm obstacle in the middle of flat terrain by varying the
unilateral constraint hγ(q) to get the desired height over the
course of the terrain. The resulting phase portrait is shown
in Fig. 4 and joint angles are shown in Fig. 5. The biped
converges back to stable walking mode after the disturbance,
showing the robustness in walking on uneven terrain. Due to
space limitations, results of other disturbances conducted on
AMBER are omitted (see [1] for the video).
Walking up an incline: Walking on a slope is obtained by
solving the optimization problem for a non-zero value of γ .
We considered γ = 20, which is reasonable for a robot of
the size and power capabilities of AMBER. Again, we get
α∗γ , the solution to the optimization problem in Theorem 1
and apply the voltage control law resulting in stable up-slope
walking. The periodic orbit for the walking obtained is shown
in Fig. 4, behavior of angles over 10 steps is shown in Fig. 5
and the comparison of slope walking tiles between simulation
and experiment can be seen in Fig. 6c. The mismatch is
pronounced in stance knee because the motors are capable of
only delivering torque of 2Nm. In spite of this limitation, due
to inherent robustness of human-inspired control, AMBER
could achieve walking on an up-slope.

CONCLUSIONS

This paper achieved walking on three motion primitives
by using human-inspired control. From walking tiles and
joint angle tracking behavior considered, it can be stated
that the physically realizable walking obtained from the
simulation is mirrored in the walking obtained in physical
world. This speaks to the strength of the formal theory in
obtaining experimentally realizable walking. The simplicity
of the control law resulted in low computation overhead for
the controller implementation thereby enabling us to use a
time step of 5ms for each calculation. We can conclude,
by observing Fig. 3, that the obtained robotic walking is
“human-like”, as the experimental outputs match the human
output data well. In addition, the walking is also robust to
changes in terrain (up to 6cm), change of treadmill speeds
(12.5%) and even force disturbances on all of the links.
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Fig. 5: Experimental (blue) vs. simulated (red) angles over 10 steps for flat-ground, uneven terrain and up-slope walking.

(a) Walking on flat ground, γ = 00

(b) Walking on rough terrain with a disturbance of 1.94 cm

(c) Walking up a slope, γ = 20

Fig. 6: Simulation (bottom) vs Experiment (top) for: (a) flat-
ground walking, (b) uneven terrain, (c) up-slope walking.
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