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Abstract— This paper presents a novel method for achieving
exponential convergence of a Control Lyapunov Function (CLF)
based controller in a n-DOF robotic system in the presence of
parameter uncertainty. Utilizing the linearity of parameters in
the equations of motion, we construct the regressor and aug-
ment the state space of the robot to include a vector of unknown
parameters, called base inertial parameters. The augmented
state space can be utilized to realize an optimal controller
that is exponentially stable while simultaneously estimating the
parameters online. To achieve this result, acceleration data for
a given torque input is measured and used to compute the
regressor. This, in turn, is used to compute the set of base
inertial parameters in the form of linear equality constraints.
By demonstrating that it is not necessary for the estimated
parameters to converge to the actual parameters, but rather
convergence is only needed on a specified space, we are able to
construct a quadratic program enforcing convergence. The end
result is that exponential convergence of a Control Lyapunov
Function can be guaranteed, in an optimal fashion, without
prior knowledge of the parameters.

I. INTRODUCTION

During the 1980’s and 1990’s, control of robotic manipu-
lators under parameter uncertainty was studied in depth; see,
for example, [12], [13]. The special property of the equations
of motion of these n-link manipulators, viz. linearity of the
uncertain terms in the expression, was utilized to generate
the so called regressors (see [3], [13], [16]). By knowing
the acceleration data of the robot manipulators the regressor
was computed and several adaptive control schemes were
used in [6], [9] to realize asymptotic convergence of joint
angle outputs. [12] suggested a different method to realize
asymptotic convergence without using the acceleration data.
The general idea is to use the unknown parameters as the
adaptive variables in the controller, and by using a suitable
control law for these adaptive variables, the derivative of
the Lyapunov candidate function for the outputs is rendered
negative semi-definite.

These adaptive control controllers would achieve asymp-
totic convergence, but, in applications like bipedal locomo-
tion, stronger bounds on convergence are necessary: ex-
ponential convergence. This is due to the time duration
of completing a step being small. In addition, any of the
adaptive schemes mentioned do not determine the parameters
of the robot explicitly. To be more precise, these control
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schemes are designed such that determining the parameters
of the robot is completely eliminated. During the 1990’s
learning methods were adopted with adaptive control to
achieve exponential convergence. [7], [8] uses a learning
controller and exponential convergence is achieved by having
persistence of excitation in the training tasks [8]. These
controllers are specific to particular learning or a repetitive
task.

This paper presents a method to extend the method used
in [9] to realize an exponentially stable controller for a
robot with uncertain parameters. In other words, joint an-
gular position, velocity and acceleration will be used to
compute the regressor matrix. The regressor matrix, coupled
with torque data will be posed as an equality constraint to
determine the parameters of the robot. In this framework,
a higher number of samples yields better estimate of the
robot parameters. Utilizing this estimate of the parameters,
a state space model of the uncertain robot in terms of
the outputs will be constructed. By augmenting the state
space with the estimated parameters, a suitable Lyapunov
candidate will be chosen which takes into consideration
both the outputs and the parameters. With this Lyapunov
candidate, an optimal control law will be proposed through
the use of a novel quadratic program-this will guarantee
exponential convergence of the outputs. In other words, a
suitable controller will be chosen such that this Lyapunov
candidate is strictly bounded by two decaying exponentials.

The contents of the paper are divided in the following
manner: Section II starts with a brief introduction to the n-
link rigid body robotic systems and the types of controllers
that will be considered in this paper. Specifically, two types
of model based contollers are discussed: feedback lineariza-
tion and the method of computed torque. The use of Control
Lyapunov Functions (CLFs) as a means to propose control
laws as a quadratic program will be discussed. Section III
will decribe the robot model with uncertain parameters.
Specifically the concept of using the Regressor (Y) and the
base inertial parameters will be explained in detail. Section
III will also present the main result of the paper: a controller
that yields exponential stability even in the presence of pa-
rameter uncertainty. The state space model for the uncertain
robot model in terms of the outputs will be introduced
first, and then the Control Lyapunov Function (CLF) for
realizing the aforementioned objective will be introduced.
Finally, Section IV will show the simulation results of this
controller, demonstrating tracking performances of both the
outputs and the parameters for a 5-link fully actuated serial
chain manipulator.



II. ROBOT MODEL AND CONTROL

A robotic model can be modeled as a n-link manipulator.
Given the configuration space Q⊂ Rn, with the coordinates
q ∈ Q, and velocities q̇ ∈ TqQ, the equations of motion
(EOM) can be written as:

(D(q)+M)q̈+C(q, q̇)q̇+G(q)+Eq̇ = BT, (1)

where D(q) ∈ Rn×n is the mass matrix, M ∈ Rn×n is the
matrix consisting of the mass and inertia terms, C(q, q̇) ∈
Rn×n is the coriolis matrix, G(q) ∈Rn is the gravity matrix,
E ∈ Rn×n is the matrix of damping terms, T ∈ Rk is the
torque input with k the number of actuators and B ∈Rn×k is
the mapping from torque to joints.

From the equations of motion, the dynamics of the robot
can be stated as: ẋ = f (x) + g(x)T, with x = (qT , q̇T )T ∈
R2n, f (x) ∈ Rn, g(x) ∈ Rn×k. If the number of degrees of
freedom is more than the number of actuators, i.e., k < n,
then the robotic system is underactuated. Accordingly, k = n
for the fully actuated case. For simplicity, it is assumed that
the torques acting on the actuators are completely decoupled
between the degrees of freedom. This is an assumption since,
if there is any coupling, then the torques can be relabeled
into decoupled torques. In such systems, if k = n then the
torque map B is just the identity matrix.

Control Implementation. Since the objective is to achieve
tracking, a convenient step is to make the joint angles track a
set of trajectories. We would like to generalize this by picking
k functions of joint angles referred to as actual outputs
ya : Q→ Rk, which are made to track functions termed the
desired outputs yd : Q→ Rk. The objective is to drive the
error y = ya− yd → 0. These outputs are also termed virtual
constraints in [14]. The outputs are picked such that they are
relative degree two outputs ([10]). In other words, ya will
be functions of joint angles, and not angular velocities. If
relative degree one outputs are chosen, then the controller
can still be formulated in a slightly different manner [1].

We can adopt two types of model based controllers:
feedback linearization and the method of computed torque.

Feedback Linearization. For the vector field already de-
fined, ẋ = f (x)+ g(x)T, we can take the Lie derivatives of
the outputs:

ẏ = L f y, ÿ = L2
f y+LgL f y T, (2)

where L f ,Lg are the Lie derivatives.
Choosing outputs so that the decoupling matrix, A(q, q̇) =

LgL f y(q, q̇) is nonsingular, we can define the following
torque control law:

Tfb = A−1(q, q̇)
(
−L2

f y(q, q̇)+µ
)
, (3)

where µ ∈ Rk is the linear control input. The resulting
dynamics will be ÿ = µ (see [10]), and the resulting state
space representation is:[

ẏ
ÿ

]
︸ ︷︷ ︸

η̇

=

[
0k×k 1k×k
0k×k 0k×k

]
︸ ︷︷ ︸

F

[
y
ẏ

]
︸ ︷︷ ︸

η

+

[
0k×k
1k×k

]
︸ ︷︷ ︸

G

µ, (4)

where µ can be conveniently picked such that the fully
controllable linearized system is stabilized.

Computed Torque. The method of computed torque utilizes
the idea of achieving the desired acceleration in the robot.
Therefore the torque controller for a n-DOF robot can be
defined as:

Tct = (D(q)+M)q̈d +C(q, q̇)q̇+G(q)+Eq̇, (5)

where q̈d ∈ Rn is the desired acceleration required in the
robot, and Tct ∈Rn. Formally, the left hand side of (5) should
be BTct ∈Rn to match with (1). Since this equation of motion
has n rows, the desired acceleration will lead to the range
space of the mapped torque BTct to have size n. This will
be true only if k = n (since the torques are assumed to be
decoupled, B then is an identity matrix implying BTct = Tct).
But, if k < n, then Tct needs to be reduced to k rows so that
the operator B can be used. In other words, special care
needs to be taken to pick q̈d such that the torque acting on
the unactuated degree of freedom is identically zero. In other
words, n− k entries in Tct must be identically equal to zero
such that

Tct = BT∗ct, (6)

when B is not invertible; here T∗ct is the reduced vector of
torques with the zero entries removed.

Since the objective of tracking is to drive the error y to
zero, we need to employ the method of computed torque
utilizing these outputs. In other words, the idea is to use the
outputs y to obtain the desired acceleration. Given the output
y, it follows that:

ẏ =
∂y
∂q

q̇

ÿ =
∂y
∂q︸︷︷︸

J

q̈+ q̇T ∂ 2y
∂q2︸ ︷︷ ︸
J̇

q̇. (7)

If k = n then the desired acceleration can be calculated as:

q̈d = J−1 (
µ− J̇q̇

)
, (8)

where µ is control law with J being invertible due to the
choice of the outputs. If k < n, then the rank of J reduces to
k rendering it non-invertible. Therefore, for underactuated
systems q̈d is picked in a different manner in order to
satisfy (6). Since this paper only requires the case k = n,
the procedure for obtaining q̈d will be omitted.

Note that with q̈d defined as in (8) and the torque controller
defined as in (5), if n = k, the resulting dynamics of the
output will be the same as (4). In other words the two
controllers—feedback linearization and the method of com-
puted torque—are equivalent. Therefore, the two controllers
lead to the same output dynamics of the robot irrespective
of controller chosen (see [11]).

Both the controllers, (3) and (5), assume that the model is
known. If there are differences in the actual and the assumed
model, then the outputs y may not be driven to zero. In



other words, ÿ 6= µ . The dynamics of the output with model
uncertainties will be discussed in the next Section.

Computing µ . One of the possible control laws for µ which
renders the system ( f (x),g(x)) stable would be:

µ =−2εL f y(q, q̇)− ε
2y(q), (9)

where ε > 0 denotes the rate of convergence. The resulting
linear system on the outputs is: ÿ = −2ε ẏ− ε2y, which
exponentially drives the output y→ 0. More details can be
found in [15]. Even though this controller gives exponential
convergence, (9) is not optimal and might require high torque
inputs. Therefore, a different control law, based upon Control
Lyapunov Functions, is proposed which optimally drives the
outputs to zero.

Control Lyapunov Function (CLF). For the control law
presented in (3), if the goal is instead to find an optimal
value of µ for the system ÿ = µ , then the problem can
be formulated in the form of a Control Lyapunov Function
(CLF) based controller (see [1], [2]). The control law µ is
chosen such that the following quadratic cost is minimized:∫

∞

0

(
η

T Qη +µ
T Rµ

)
dt, Q > 0, R > 0. (10)

We can choose P to construct an Exponentially Stable
Control Lyapunov Function (ES-CLF) that can be used to
stabilize the output dynamics in an exponential fashion (see
[1] for more details). Choosing the CLF:

V (η) = η
T Pη . (11)

It can be verified that this is a ES-CLF; here P is the solution
to the Continuous Algebraic Riccati Equation (CARE):

FT P+PF−PGGT P+Q = 0, (12)

where F,G are given in (4). Differentiating the function (11)
yields:

V̇ (η) = L fV (η)+LgV (η)µ, (13)

where

LFV (η) = η
T (FT P+PF)η ,

LGV (η) = 2η
T PG. (14)

To find a specific value of µ , we can utilize a minimum
norm controller (see [4]) which minimizes µT µ subject to
the inequality constraint:

V̇ = LFV (η)+LGV (η)µ ≤−γV, (15)

where

γ =
λmin(Q)

λmax(P)
, (16)

with λ denoting the eigenvalue of the matrix. Satisfying (15)
implies exponential convergence.

These formulations motivate the introduction of a
quadratic program that balances the control objective subject
to torque bounds [5]:

argmin
(δ ,µ)∈Rn+1

pδ
2 +µ

T
µ (17)

s.t. ψ0 +ψ1µ ≤ δ

A−1(−L2
f y(q, q̇)+µ)≤ Tmax

A−1(−L2
f y(q, q̇)+µ)≤−Tmax,

where p > 0 is the penalty that allows small deviation from
the desired outputs in order to facilitate use of reduced
torques, ψ0 = L fV (η) + γV (η) and ψ1 = LgV (η). It is
important to note that similar to (9), even with this controller,
if δ ≡ 0, then the exponential convergence of the outputs is
guaranteed given that the parameters of the robot are known.

III. MODEL UNCERTAINTY

Unlike the previous controllers (3), (5), which required an
accurate model of the robot, this section will introduce con-
trollers which consider model uncertainty as well. Since the
parameters are not perfectly known, the equation of motion,
(1), computed with the given set of parameters will hence-
forth have ˆ over the symbols. Therefore, Da,Ma,Ca,Ga,Ea
represent the actual model of the robot, and D̂,M̂,Ĉ, Ĝ, Ê
represent the assumed model of the robot.

It is a well known fact that the inertial parameters of a
robot are affine in the EOM (see [13]). Therefore (1) can be
restated as:

Y(q, q̇, q̈)Θ = BT, (18)

Y(q, q̇, q̈) is the regressor [13], and Θ is the set of base
inertial parameters. If Θ is the minimal representation of the
parameters, then it is called the Base Parameter Set (BPS)
[16].

Estimating Θ. Given the angle (q), velocity (q̇) and accel-
eration (q̈) for the applied torque input T, it is possible to
estimate Θ of length d by the following method:

argmin
Θ∈Rd

Θ
T

Θ (19)

s.t. Y(q, q̇, q̈) Θ = BT .

If s samples are used instead of one, then Θ can more
accurately approximate the actual set of base parameters Θa.
Therefore, the following optimization problem is proposed:

argmin
Θ∈Rd

Θ
T

Θ

s.t.


Y(q1, q̇1, q̈1)
Y(q2, q̇2, q̈2)

...
Y(qs, q̇s, q̈s)


︸ ︷︷ ︸

YC

Θ =


BT1
BT2

...
BTs


︸ ︷︷ ︸

TC

, (20)

with YC denoting the collection of s regressor matrices such
that the rank of YC is not less than s, and TC denotes
the collection of torque vectors. The following Lemma will



state the conditions required for computing the actual set of
parameters Θa from the optimization problem (20).

Lemma 1: Using the optimization problem presented in
(20), if the number of independent samples s∗ is sufficient
such that the rank R(YC) ≥ d(Θ), with d(Θ) denoting the
size (dimension) of Θ, then Θ = Θa. In other words, the
actual set of parameters can be computed as:

Θa = (YT
CYC)

−1YT
CTC. (21)

Control with Model Uncertainty. We will now define
model based controllers for robotic systems with uncertain
parameters. Feedback linearization can be implemented as:

TfbU = Â−1(q, q̇)
(
−L̂2

f y(q, q̇)+µ
)
, (22)

where Â and L̂2
f can be obtained from the estimated param-

eters Θ̂. Similarly, the method of computed torque can be
implemented as:

TctU = (D̂(q)+ M̂)q̈d +Ĉ(q, q̇)q̇+ Ĝ(q)+ Êq̇,

= Y(q, q̇, q̈d)Θ̂. (23)

Again, if k = n, then TfbU = TctU (see [11]). Therefore,
we will only consider the method of computed torque which
can be conveniently evaluated through the regressor. The
following lemma will show how the dynamics of the outputs
evolve with the assumed set of parameters Θ̂.

Lemma 2: Assume that the inertia matrix (D̂(q)+ M̂) is
bounded and invertible. If k = n, then the output dynamics ÿ
will evolve as:

ÿ = µ + J(D̂(q)+ M̂)−1Y(q, q̇, q̈)(Θ̂−Θa) (24)

With the method of computed torque shown in (23),
and with the minimum number of independent samples s∗

achieved according to Lemma 1, we have:

TctU = Y(q, q̇, q̈)Θ̂ = Y(q, q̇, q̈)Θa =⇒ Θ̂ = Θa. (25)

Therefore, if k = n, then according to Lemma 2, ÿ= µ , which
is an important observation. But, it is not always possible to
get s∗ samples which make YT

CYC invertible. Under such
conditions, we will consider the following theorem:

Theorem 1: There exists p∗ independent samples of q, q̇
and q̈ such that the optimization problem (20) provides Θ =
Θ∗ such that

Y(q, q̇, q̈)Θ∗ = Y(q, q̇, q̈)Θa (26)

This theorem is aligned with the concept of persistence
of excitation ([8]). If p∗ ≥ s∗, then the controller used is
considered persistently exciting.

Theorem 1 can be utilized to rewrite (24). Specifically, the
term Y (q, q̇, q̈)Θa can be replaced with Y (q, q̇, q̈)Θ∗, yielding:

ÿ = µ + J(D̂(q)+ M̂)−1Y(q, q̇, q̈)(Θ̂−Θ
∗). (27)

This is significant because it means that it is not necessary
to know the actual model of the robot to have the desired
dynamics, and the sample space required to determine Θ∗

depends on the dynamics itself. This property can be used
to frame the Control Lyapunov Function for the uncertain
model in such a way that the knowledge of Θa can be entirely
eliminated.

Control Lyapunov Function with Parameter Uncertainty.
Define:

Φ = (D̂(q)+ M̂)−1Y(q, q̇, q̈). (28)

With p∗ samples, we have ΦΘ∗ = ΦΘa according to Theo-
rem 1. Also declare the following variables:

Θ̃ = Θ̂−Θa, Θ̃
∗ = Θ̂−Θ

∗ (29)

and the control law for the assumed set of base parameters:
.
Θ̂ = β . (30)

From (29) it is also evident that ˙̃
Θ∗ = ˙̂

Θ = ˙̃
Θ. Here Θ̃ is not

known, but Θ̃∗ is known. With these substitutions, and using
(4) and (27), we have the following state space representation
for the uncertain model:

η̇ = Fη +Gµ +GJΦΘ̃
∗

.̃
Θ
∗ = β , (31)

where F and G are obtained from (4). For this representation,
we could apply a simple control law:

β =−εΘ̃∗, µ =−2εL f y(q, q̇)− ε2y(q)

in order to drive η → 0. We could also pick µ,β by
using Control Lyapunov Functions. In this case, consider a
Lyapunov candidate for the uncertain model:

VU(η ,Θ̃∗) = η
T Pη + Θ̃

∗T
ΓΘ̃
∗, (32)

with P the solution to CARE given in (12), and Γ a positive
definite matrix. Taking the derivative of VU, substituting for
η̇ and

.̃
Θ∗, and picking κ = 2ηT PGJΦΘ̃ yields:

V̇U(η ,Θ̃∗,µ,β ) = η̇
T Pη +η

T Pη̇ +2Θ̃
∗T

Γ

.̃
Θ
∗, (33)

= η
T (FT P+PF)η +2η

T PGµ

· · ·+κ +2Θ̃
∗T

Γβ .

With this CLF candidate, we can realize an optimal controller
which will render the Lyapunov function VU exponentially
convergent by imposing the constraint:

V̇U ≤−γVU, (34)

where γ is given by (16). In other words, we can design the
following optimal controller:

argmin
(µ,β )∈Rn+d

µ
T

µ +β
T

β (35)

s.t. LFVU +LGVUµ +LΘVUβ ≤ 0,

where

LFVU(η ,Θ̃∗) = η
T (FT P+PF)η +κ + γVU(η ,Θ̃∗),

LGVU(η ,Θ̃∗) = 2η
T PG,

LΘVU(η ,Θ̃∗) = 2Θ̃
∗T

Γ. (36)



The dimension of µ is k = n since full actuation needs to be
assumed to utilize (27).

It is important to note that the term κ is a function of q̈.
Therefore, the term q̈ appears in V̇U. In particular, q̈ appears
on the right hand side of (27). So the state space for the
given system ( f (x),g(x)) has an algebraic loop which needs
to be considered while simulating this controller. One way
to do it is by specifying µ separately and substituting into
(27). By picking:

µ =−GT Pη , (37)

we obtain the following simplification to V̇U:

V̇U(η ,Θ̃∗,µ,β ) =−η
T Qη +κ +2Θ̃

∗T
Γβ , (38)

where Q is obtained from the CARE (12). µ is used to
evaluate (31) which gives the q̈ required to evaluate κ .

The minimum norm controller for the parameters can thus
be formulated as:

argmin
β∈Rd

β
T

β (39)

s.t. −η
T Qη +κ +2Θ̃

∗T
Γβ ≤−γVU,

where κ is known, Θ̃∗ is also known. Therefore β can be
computed accordingly in every iteration. With this controller
we can introduce the following theorem:

Theorem 2: Let µ be chosen as in (38), and utilized
in the computed torque controller, TctU, or the feedback
linearization controller, TfbU, as given in (23) and (22)
with parameters determined by the quadratic program (39).
Then the control Lyapunov function, VU, given in (32) is
an exponentially stabilizing Control Lyapunov Function. In
particular,

c1‖(η ,Θ̃∗)‖2 ≤VU(η ,Θ̃∗)≤ c2‖(η ,Θ̃∗)‖2

inf
(µ,β )∈Rn+d

[V̇U(η ,Θ̃∗,µ,β )+ c3VU(η ,Θ̃∗)]≤ 0 (40)

for

c1 = min{λmin(P),λmin(Γ)},
c2 = max{λmax(P),λmax(Γ)},
c3 = γ

Due to space constraints the proof is omitted, but the result
is established by finding a specific value of µ and β . We can
choose µ =−GT Pη , as given in (37), and

β =−Γ
−1

Φ
T JT GT Pη− γΘ̃

∗, (41)

and evaluate (39) which satisfies (40).

IV. SIMULATION RESULTS

We consider a 5 link robot manipulator Fig. 1. It specif-
ically originates from the 5 link robot, AMBER, used to
achieve walking via human-inspired control (see [15]). Since
only continuous time systems are considered in this paper,
we will not consider impact dynamics, and therefore not
consider locomotion. Instead, we will consider the control
objective of stabilizing the robot upright in the presence of

z

x

èsf

èsh

ènsh

èsk

ènsk

Fig. 1: The biped AMBER (left) and the stick figure of
AMBER showing the configuration angles (right).

uncertain parameters. In other words, the objective is to drive
all the joint angles and angular velocities to zero.

We can define the configuration space : q =
(qs f ,qsk,qsh,qnsh,qnsk)

T ∈ R5, which is the vector of
stance ankle, stance knee, stance hip, non-stance hip and
non-stance knee angles in order. Full actuation (n = k) is
assumed for this robot.

Outputs. For this robot, the outputs y are defined in the
following manner: joint angles of the robot are the actual
outputs, i.e., ya = q. Since the objective here is to drive the
robot to a zero angle configuration, the desired output, yd , is
zero. Therefore, the outputs become:

η =

[
q
q̇

]
, (42)

and the objective is to drive the output η to zero, i.e., η→ 0.
We will consider the vector of parameters Θ̂ which contain

the masses and inertia of each link, inertia of the motors
and damping friction. The left hand side of (1) can be
rewritten such that the unknown variables can be linearly
separated from the equations. The set of base parameters Θ∗

is computed with p∗ samples as indicated in Theorem 1. p∗

depends on the size of Θ∗. 58 parameters are considered here
to verify convergence of the controller. It is found that p∗ =
5 for the robot manipulator considered here. Accordingly,
the state variables, η and Θ̂−Θ∗, form the state space
representation given in (31). These states are simulated in
MATLAB with the controller given by (37) for evaluating
µ and (39) for evaluating β , and the following results are
obtained.

Parameters Θ̂ are started with a 40% error and convergence
to Θ∗ is observed. Plots of the actual and desired outputs,
ya and yd , are shown in Fig. 2. Plots of the parameter error,
Θ̃∗, and the Lyapunov function, VU are shown in Fig. 3. The
tiles of the robot at different instances of time until it reaches
zero angle configuration is shown in Fig. 4. Hyper-extension
of the knee joints of the robot is observed in the tiles, but
is ignored since the objective here is to achieve exponential
convergence in tracking under parameter uncertainty.
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Fig. 4: Tiles of the robot showing different configurations over time until the angles converge to zero.
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Fig. 2: Figures showing the comparison between actual (blue)
and desired (red) joint angles over time. The joint angles are
seen to be converging to zero.

V. CONCLUSIONS

The paper presents a method for achieving exponential
convergence under parameter uncertainty by using a uni-
fied CLF controller, both in theory and simulation. This
is achieved by using the property that the parameters are
affine in the dynamics. It is also shown that the parameters
do not have to converge to the actual set of base inertial
parameters Θa to realize exponential convergence, and the
parameter set obtained is primarily decided by the robot
design and the state space in which the robot manipulator
is operating. One major drawback with this method is that it
uses acceleration data which is noisy and could lead to bad
parameter estimation.
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