
Realizing Linear Controllers for Quadruped Robots on Planetary
Terrains

Aditya Shirwatkar∗
Somnath Kumar∗
Shishir Kolathaya

Indian Institute of Science
Bengaluru, India

Shamrao Garur
U R Rao Satellite Centre

Bengaluru, India

Vinod Kumar
Indian National Space Promotion and

Authorization Center
Bengaluru, India

ABSTRACT
Until now, planetary exploration has been accomplished with whee-
led vehicles, making movement in highly complex, sandy, and slop-
ing terrain incredibly tough. On the other hand, legged robots have
come a long way in the last decade and have reached a stage of
development where practical applications appear to be possible. To
collect critical scientific data, legged robots can overcome wheeled
vehicles’ difficulties when exploring harsh environments like im-
pact craters. As a result, there is a need to develop simple, stable
walking controllers given the limited power resources and reserve
maximum onboard computing for scientific equipment while ex-
ploring such regions. This work proposes a walking controller for
legged robots that is computationally efficient at runtime for travers-
ing planetary terrains. We implement this walking controller on our
custom-built quadruped, using learned linear feedback policies that
modulate the end-foot trajectories. The proposed walking controller
can traverse various planetary terrains such as flat, sloped, rugged,
loose, and lower-than-Earth gravity conditions in simulation en-
vironments. Our controller outperforms the baseline open-loop
controller on planetary landscapes by reducing slippage and in-
creasing stability. We have also provided preliminary hardware
testing results of our controller. In addition, video results can be
found at: https://youtu.be/La3y-xhWm1U

CCS CONCEPTS
• Computer systems organization → Robotic control; • Com-
putingmethodologies→Randomized search;Reinforcement
learning.

KEYWORDS
Quadrupedal Walking, Linear Policy, Planetary Terrains

ACM Reference Format:
Aditya Shirwatkar, Somnath Kumar, Shishir Kolathaya, Shamrao Garur,
and Vinod Kumar. 2023. Realizing Linear Controllers for Quadruped Robots
on Planetary Terrains. In Advances In Robotics - 6th International Conference
of The Robotics Society (AIR 2023), July 05–08, 2023, Ropar, India. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3610419.3610572

∗Both authors contributed equally to this research.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
AIR 2023, July 05–08, 2023, Ropar, India
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9980-7/23/07. . . $15.00
https://doi.org/10.1145/3610419.3610572

1 INTRODUCTION

Figure 1: Overview of Complete Pipeline

Future robotic exploration missions into our solar system will
involve navigation over a diverse array of terrains including those
seen on craters or along cliffs. These types of habitats provide
vital information about the planet’s geological history. Due to the
unpredictability of the encountered soil and the requirement to
traverse mountainous terrains, it is impossible for classical wheel-
based rovers to navigate over these geological locations. Due to
the recent advancement in locomotion with quadrupedal walking
robots [4, 8, 12], there is a growing interest to deploy leg-based
rovers for planetary exploration.

Over the decades, many methods have been proposed for realiz-
ing robust-legged locomotion on unstructured terrains. Classical
works such as the spring-loaded inverted pendulum (SLIP) with
Raibert’s heuristic controller [16] and the ZeroMoment Point (ZMP)
[5] approach have been used to generate robust walking behaviors.
Convex Model Predictive Control (MPC) [6] approach has shown
dynamic motion behaviors using only the centroidal dynamics
model. Nevertheless, these optimization-based methods suffer from
the drawback of requiring heavy onboard compute resources and
relying on knowing the system’s dynamics model.

Concurrently, due to the advances in deep learning techniques,
development of legged locomotion controllers based on Reinforce-
ment Learning (RL) have made significant progress over the decade.
RL combined with the centroidal dynamics model of quadruped
has been shown to solve stepping-stone locomotion, two-legged
in-place balance, and balance beam locomotion with a good sim-to-
real transfer [21]. There have also been approaches that use Deep

https://youtu.be/La3y-xhWm1U
https://doi.org/10.1145/3610419.3610572
https://doi.org/10.1145/3610419.3610572
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3610419.3610572&domain=pdf&date_stamp=2023-11-02

AIR 2023, July 05–08, 2023, Ropar, India Shirwatkar and Kumar, et al.

RL policies to parameterize end-foot trajectories [12]. Although
these have been shown to work in challenging outdoor terrains, the
policy requires thousands of parameters for inference and millions
of samples to train. This makes the overall training and deployment
process computationally expensive

It is worth mentioning that work on legged rovers for plane-
tary exploration is not a recent development, and robots like ATH-
LETE [20], Scorpian [7], SpaceClimber [2], and SpaceBok [1] have
been explicitly developed for such use cases. ATHLETE, Scorpian,
and SpaceClimber offer good stability while traversing rough ter-
rain but have limitations on hardware that acts as a bottleneck for
traversability, speed and agility. SpaceBok, on the other hand, offers
excellent dynamic maneuvers, which have been shown to work
in low gravity conditions [17] and sandy terrains [9]. However,
considering the limited resources available for space exploration
missions, having computationally efficient and robust controllers
is critical, as most of the compute should be accessible to the sci-
entific equipment. Linear feedback policies have shown promising
alternatives to the classical model-based and Deep RL approaches
[13, 15]. These linear policy-based approaches allow one to realize
an efficient and robust controller for walking robots.

Motivated by these findings, we propose a control framework
consisting of linear feedback policies to generate walking trajec-
tories on flat, sloped, rough, loose (soiled/sandy), and lower-than-
Earth gravity environments such as Mars and Moon. The following
points summarizes our main contributions in this work:

1. Learning linear policies to control a highly non-linear sys-
tem such as a quadruped in various planetary terrains and
gravity conditions. Our approach significantly differs from
[9] and [17] as we use neither Deep Neural Network (DNN)
policy nor optimization-based control methods. This allows
us to not only have computationally efficiency, but also an
intuitively interpretable controller.

2. Large-scale approximate terramechanics subroutine for
quadruped robots in simulation. To the best of our knowl-
edge, there is no large-scale real-time solution for terrame-
chanics simulation which can be readily integrated with
learning algorithm pipelines. As a result, we utilized Nvidia’s
IsaacGym [10] in conjunction with a Bekker model’s subrou-
tine [3] to mimic sand-soil contact interactions. It is worth
mentioning that we did not attempt to focus on sinkage but
rather on slippage effects.

3. Preliminary hardware testing to showcase the capabilities
of our controller on loose soil. We specifically demonstrate
hardware transfer of the learned linear policy, showing an
improvement over open-loop controllers in terms of robust-
ness.

The paper is organized as follows: Section 2 will describe the
robot model, notations, and hardware specifications. Section 3 will
describe the linear policy, the walking controller, and details on the
terramechanics subroutine. Section 4 will describe the training and
evaluation methods used. Section 5 will provide simulation results,
assessments, comparison with the baseline open-loop controller,
and preliminary hardware tests. Finally, Section 6 will provide
conclusions.

2 ROBOT DESCRIPTION

Figure 2: Figure showing quadruped’s kinematic description
where dashed curve shows the ideal end-foot trajectory gen-
erated by the open-loop controller, and bold curve in pink
shows the modulation of the ideal trajectory by the linear
policy

This section will briefly explain the quadruped robot used, and
the accompanying actuator-sensor, terrain orientation estimation,
and kinematics frameworkwe intend to employ for locomotion. The
quadruped, as shown in Fig. 2, is a custom-built low-cost walking
robot developed for rapid prototyping of learning-based controllers.
The symbols FL, FR, BL, BR, represent the front-left, front-right,
back-left, and back-right legs respectively. Also,𝑂world,𝑂COM ∈ R3
represent the world and Centre of Mass (COM) frames respectively.
For simplicity, only the FR frame at the hip joint 𝑂hip, FR ∈ R3 is
shown. It is worth noting that, unlike SpaceBok [1], the quadruped
is not explicitly built for planetary exploration applications, as in
this work, we want to focus on building the model-free control
framework that is easily transferable to any quadruped system.

Actuation: Overall, the robot model consists of 6 floating and 12
actuated Degrees of Freedom (DoF). The 12 DoF are actuated using
B3M Smart Servo motors. The motors can measure joint angles
(hip and knee) and torques via joint encoders and motor current
sensors. The stall torque provided by the motors is in the range of
4.1 Nm.

Onboard Computation:We use a Raspberry PI 3b microcom-
puter for running all the high-level controllers. It consists of 2
GB RAM and includes four high-performance ARM Cortex-A53
processing cores running at 1.2 GHz. An STM32 microcontroller
board is also used for low-level communication between a Rasp-
berry Pi and the servo motors using Serial Peripheral Interface (SPI)
communication.

Sensors: Accurate feedback is necessary for any controller to
drive the system to the desired state. For this, we use an Xsens MTi-
610 Inertial Measurement Unit (IMU), which provides calibrated
data on the 3D orientation, angular velocities, acceleration, and
magnetic field.

Local Terrain Slope Estimation: We require the local terrain
slope as feedback to the controller. Hence we use a similar tech-
nique as [13] to estimate it with the help of joint encoders in the
motors and six Time of Flight (ToF) sensors placed in a hexagonal

Realizing Linear Controllers for Quadruped Robots on Planetary Terrains AIR 2023, July 05–08, 2023, Ropar, India

configuration below the torso as shown in Fig. 2. Note ToF sensors
are only used to estimate the readings on hardware as the cur-
rent version of IsaacGym does not support range sensors. This ToF
sensor placement is required as currently, we lack any foot force
sensing capabilities for contact detection and thus are planned for
the future versions of the robot.

Kinematics: We treat each leg independently to derive ana-
lytical relations for forward and inverse kinematics. Here 𝑞1, 𝑞2,
and 𝑞3 represent abduction, hip, and knee joints and form a serial-
3R kinematic chain as shown in Fig. 2. This reduces the runtime
overhead present in the iterative solvers, as it is one of the critical
components that help us map end-foot trajectories to joint space.

3 METHODOLOGY
This section provides an overview of the control architecture, i.e.,
how end-foot trajectories are generated and tracked in real-time
to walk in various environments. This structure is also depicted
graphically in Fig. 1.

3.1 Reinforcement Learning
Quadrupedal locomotion in this work is treated as an RL problem.
We parameterize our RL policy with end-foot trajectories with
sinusoidal height variation to accelerate training. Our method is
similar to [13, 15], which uses a feedbackmechanism to dynamically
alter these trajectories based on body and local terrain slope. At
a high level, the RL policy infers the parameters of the walking
trajectories and, therefore, robot motion. We limit our policy to
being linear, as it then requires low computation, allowing our
policy to be executed on an onboard embedded system in real-time.
Section 4 contains further information on the training algorithm
used to learn these linear policies.

Observation Space: The observation space, which is the input
to the policy, is in R18×1 in our formulation. It consists of robot
walking height ℎ, body orientation in roll 𝛼 , pitch 𝛽 , yaw 𝛾 , the
position of foot 𝑟𝑖 ∈ R3 for each leg 𝑖 ∈ {FL, FR, BL, BR} with
respect to the center of mass (COM), local terrain slope in roll 𝛼𝑠
and pitch 𝛽𝑠 .

Action Space: The action space, i.e., the output of the policy,
is in R8×1, which represents the instantaneous shifts. The shifts
𝜉𝑖 ∈ R3 are 𝑥,𝑦, 𝑧 translational transforms for the leg trajectories
of the robot in the body frame. These instantaneous shifts result in
reactive behavior, as seen in Fig. 2.

Linear Policy: We choose the policy to be 𝜋 (s) := 𝑀 (Θ)s,
where 𝑀 ∈ R8×18, is a matrix that maps the observations s to
actions, and Θ represents the learnable parameters, i.e., the policy
matrix elements. To simplify the problem, we consider 𝑀 to be a
sparse matrix by accounting for the intuitive contribution of each
element in the observation space to the elements of the action space.
For example, the shift in 𝑥 for the leg is only affected by the body
height, body pitch, slope pitch, and 𝑥 coordinate of the legs. So the
column element for the respective terms will be learned, with the
rest always being zero. Such structures also showcase one of the
advantages of having linear feedback policies as they are easier to
analyze and impose intuitive heuristics than DNNs.

3.2 Walking Controller
Walking over varied terrains such as flat, inclined, rough, and loose
brings unique problems that cannot be acquired straight from the
open-loop walking controller (our framework without the linear
policy feedback). As mentioned earlier, we use the linear policy to
alter the end-foot trajectories in real-time based on the observations
to ensure steady walking. For the scope of this work, we focused
on mainly realizing two types of gait behaviors: trot and crawl.

The trajectory generator takes the desired linear velocity com-
mand 𝑣𝑑 ∈ R2 from the joystick along with gait parameters (gait
type, swing time 𝑇𝑠𝑤 , stance time 𝑇𝑠𝑡 , swing height ℎ𝑠𝑤 , walking
height ℎ0) to calculate the touch-down point of the swing leg. The
gait parameters are chosen according to the literature. For sim-
plicity, we will show the trajectory generation for a single 𝑖th leg
(𝑖 ∈ {FL, FR, BL, BR}), which can be extended to other legs easily.
The foot placement for the swing leg is determined using Raibert’s
heuristic [16], and the instantaneous shifts 𝜉𝑖 as follows,

𝜌𝑥𝑦 =
𝑣𝑑𝑇𝑠𝑡

2
+ 𝜉𝑖,𝑥𝑦, (1)

where 𝜌𝑥𝑦 ∈ R2 is the desired step location on ground plane,
𝜉𝑖,𝑥𝑦 ∈ R2 are the 𝑥,𝑦 components of the shifts for the 𝑖th leg.
From the classical viewpoint, shifts are similar to the capture-point
feedback term [14] used for push recovery. However, this capture
point requires certain model assumptions and only depends on
velocity feedback, which may not always hold in all scenarios;
hence the motivation to learn the shifts that depend on multiple
robot states.

The leg trajectories for every time step are generated as follows,

Δ𝑟𝑥𝑦 =

{ 𝜌𝑥𝑦−𝑟𝑥𝑦
𝑇𝑠𝑤

𝜋
𝜋−𝜙 Δ𝑡 , when in swing

−𝑣𝑑 Δ𝑡 , when in stance
𝑟𝑥𝑦,𝑑 = 𝑟𝑥𝑦 + Δ𝑟𝑥𝑦

𝑟𝑧,𝑑 =

{
ℎ𝑠𝑤 sin𝜙 + ℎ0 + 𝜉𝑖,𝑧 , when in swing
ℎ0 + 𝜉𝑖𝑧 , when in stance

(2)

where 𝜙 ∈ [0, 𝜋] is the 𝑖𝑡ℎ leg phase indicating the percentage com-
pletion of swing time,Δ𝑡 is the control time-step, 𝜉𝑖,𝑧 is 𝑧 component
of the shift for the 𝑖th leg, 𝑟𝑥𝑦 represent the 𝑥,𝑦 components of the
current foot position, and 𝑟𝑥𝑦,𝑑 and 𝑟𝑧,𝑑 represent the desired foot
positions for the 𝑥,𝑦 components and 𝑧 component respectively.

Thus the entire leg trajectory gets modulated by the predicted
action values of the linear policy. We choose to have a decoupled
structure in 𝑥,𝑦 and 𝑧 for the end foot trajectory because it allows
us to take twist inputs and instantaneous shifts seamlessly from
the joystick and the policy respectively. In theory, the 𝑧 component
variation can consist of any function that generates a swinging
profile; however, we used sinusoidal variation to fulfill our require-
ments. An inverse kinematics function then gives the command
joint angles for each leg described earlier.

3.3 Details of Terramechanics Subroutine
We need controllers that do not destabilize the quadruped while
walking over loose terrains made up of soil and sand. Thus, poli-
cies must be explicitly trained in such environments for seamless
sim-to-real transfer. Current physics simulators like Chrono [19]

AIR 2023, July 05–08, 2023, Ropar, India Shirwatkar and Kumar, et al.

and Adams-Based Rover Terramechanics and Mobility Simulator
(ARTEMIS) [22] lack the ability to perform real-time computations
required for fast realization of learning-based controllers. A simple
alternative is to create an approximate terramechanics subroutine
of the Bekker model [3] in an existing fast and large scale simulator
for Robot Learning such as Nvidia IsaacGym [10]. We only focus on
the shear forces acting at the contact, which causes slippage in the
total distance traveled. To account for the effects of high sinkage is
beyond the scope of this work; hence, it is left for future works.

Shear Stress at the contact: Consider the scenario shown
in Fig. 4 where the contact of the leg produces a vertical load𝑊 ,
with 𝑎 being the projected contact area of cross-section AB. For
simplicity, we neglect the effects due to the curvature of the leg
and treat the contact area as a flat surface. Then the pressure 𝑃 ,
produced at the contact surface on the soil, is given by 𝑃 =𝑊 /𝑎.
This motion creates shear stress at the cross-section AB. The Mohr-
Coulomb failure criterion estimates the soil failure, which is given
by, 𝜏𝑚𝑎𝑥 = 𝐶 + 𝑃 tan(𝜙𝑐), where 𝜏𝑚𝑎𝑥 is the failure stress, 𝐶 is
the soil cohesion, and 𝜙𝑐 is the angle of friction. The actual shear
stress generated is then derived as, 𝜏 = 𝜏𝑚𝑎𝑥 (1 − 𝑒− 𝑗/𝐺) and
𝐹𝑠 = 𝜏 𝑎. Here 𝜏 is the actual shear stress generated at the contact
surface, 𝑗 is the shear displacement, and 𝐺 is the shear modulus.
Once 𝜏 is calculated at the contact surface, one can say that a shear
force 𝐹𝑠 is acting on the body. This force then induces a slippage
at contact, which means that the actual velocity of the body is
reduced as it is a reaction force. The above equations are then used
to apply an external force at the next time step of the simulation.
Finally, different gravity conditions can be simulated by changing
the parameters of the physics engine solver.

4 POLICY TRAINING AND EVALUATION
We have used the Augmented Random Search algorithm [11] for
policy search. The algorithm is comparable to other model-free RL
algorithms when searching linear deterministic policies. Given the
problem setup, the algorithm’s goal is to determine the parameters
Θ of the matrix𝑀 that yield the best rewards, which leads to the
best locomotion on different planetary terrains. To exploit the par-
allelization capabilities of Isaac Gym, we implemented a batched
version of ARS.

4.1 Domain Randomization
We employ two-stage domain randomization to reduce the sim-
to-real gap and produce robust learned policies. The first stage
consists of randomizing the robot orientation and spawning height
at the start of each episode. This ensures that the policy can recover
from unstable configurations. The second stage consists of chang-
ing the terrain of locomotion using curriculum learning similar
to [13]. Initially, the curriculum consisted of easier terrains like
flat ground and lower slope values. After every𝑚 iteration of the
learning algorithm, where𝑚 is a hyper-parameter, the difficulty of
terrain is gradually increased by training on higher slope values
and rough terrains. This ensures that the policy has seen all the
different terrain types. While learning the linear policies, we also
randomly sample the soil/sand parameters for every rollout to avoid
overfitting. The properties used for our experiment are obtained
from [18].

4.2 Reward Function
Obtaining a good reward function is critical to reduce the training
time and ensure that the learned policy makes optimal predictions
for the walking controller. We choose our reward function 𝑅 to be,

𝑅 = 𝐾𝑤1,𝑢1 (∥𝑣𝑐𝑚𝑑 − 𝑣𝑐𝑢𝑟𝑟 ∥) + 𝐾𝑤2,𝑢2 (𝛼 − 𝛼𝑠) +
𝐾𝑤3,𝑢3 (𝛽 − 𝛽𝑠) + 𝐾𝑤4,𝑢4 (

𝜔𝑥,𝑦

) + 𝐾𝑤5,𝑢5 (𝑃𝑜) .
(3)

In the above equation, the function 𝐾 : R → [0, 1] is a Gauss-
ian kernel and is given by 𝐾𝑤𝑗 ,𝑢 𝑗

(𝑥) = 𝑤 𝑗 𝑒
−𝑢 𝑗𝑥

2
, where 𝑗 ∈

{1, 2, 3, 4, 5},𝑤 𝑗 and 𝑢 𝑗 are scalar weights. Whereas, 𝑣𝑐𝑢𝑟𝑟 ∈ R2
and 𝜔𝑥𝑦 ∈ R2 are current 2D linear velocity and current angular
velocity in 𝑥,𝑦 respectively. The reward can be broken into five
terms, encouraging the robot to minimize the error in commanded
and current linear velocity, maximizing the stability by aligning
the body roll and pitch to the local terrain slope, minimizing the
variation in current angular velocities, and consuming less power
𝑃𝑜 .

We have trained our robot to walk on flat, sloping grounds of
up to 15◦ and rough terrains with an average undulation of 5 cm.
The robot was commanded to track a given linear velocity in a
fixed direction from emulated joystick inputs with respect to the
world frame. The hyper-parameters of ARS used in training were:
Learning rate = 0.05, noise = 0.03, Number of directions = 20, Top-
performing directions = 4, and an episode length of 500 epochs. Null
policy (zero matrices) are initialized and iteratively improved in
batches, reducing the computational time required during rollouts.

5 RESULTS
This section contains the simulation results, comparison of the
proposed controller with the open-loop walking controller, and
the hardware tests performed. As stated earlier, we use Nvidia
Isaac Gym with the subroutine mentioned in 3.3 to validate our
framework. We made a custom gym environment to train and
evaluate the linear policies. Each policy update took on average 12
s, and thus the total training time was about 1 h 30 min. We have
learned different policies for different gravity conditions, and the
walking controller was commanded to track a velocity of 0.5 m/s
for Earth, 0.15 m/s for Mars and Moon. The control loop frequency
for the trajectory generation and motor control was 100 Hz, and
the simulation timestep was 0.01 s.

As mentioned earlier, the Bekker model subroutine introduces a
slip in the total distance traveled. Despite the slip, the policy can
keep the robot stable due to the shear forces occurring at the contact
foot. Tables ?? and ?? show the average distance traveled and the
slip occurring, which should be accounted for by the high-level path
planners. As one can see, the linear policy controller outperforms
the open-loop controller. The slip is calculated according to the
relation 𝑠𝑙 = 100| (𝑑𝑜 − 𝑑𝑙) |/𝑑𝑜 , where 𝑑𝑙 and 𝑑𝑜 is the distance
travelled on loose and rigid terrains respectively. It is also evident
that power consumption is higher as higher torques are required
to produce the same motion whenever the robot traverses on loose
terrains.

Fig. 5 shows the comparison of the performance of various gaits
in different gravity conditions for a simulation time of 15 s. We
prefer to use trot gait in higher gravity conditions to track higher
velocity commands. In comparison, gaits like crawl perform better

Realizing Linear Controllers for Quadruped Robots on Planetary Terrains AIR 2023, July 05–08, 2023, Ropar, India

Figure 3: Top figures shown are the plots of variation in torso orientation, slope orientation, and tracking errors of foot
trajectory. The bottom figures show the keyframes of the hardware experiment performed on a slope of 9◦ and loose terrain
made of artificial sand.

Loose
Terrain

Distance
Travelled (m)

Power
Consumed (kW)

Slip
(%)

Loose
Terrain

Distance
Travelled (m)

Power
Consumed (kW)

Slip
(%)

Earth No 4.991 12.996 56.30 Earth No 5.711 13.867 35.56
Yes 2.181 15.765 Yes 3.847 15.765

Mars No 1.776 3.292 18.91 Mars No 1.77 3.229 15.19
Yes 1.44 3.444 Yes 1.501 3.267

Moon No 1.762 2.959 21.66 Moon No 1.842 2.981 17.48
Yes 1.38 3.098 Yes 1.520 3.151

(a)Performance of the linear policy controller in different gravity (b)Performance of the linear policy controller in different gravity
conditions on flat ground for a simulation time of 15 s conditions on flat ground for a simulation time of 15 s

Figure 4: Figure showing an interaction between soiled/sandy
terrain and a robot leg

in lower gravity conditions. Such performance difference is because
higher frequency gaits tend to generate higher impact forces when
the leg reaches the touchdown phase. This is evident mainly due to

Figure 5: Comparison of different gaits in different gravity
conditions for a simulation time of 15 s

AIR 2023, July 05–08, 2023, Ropar, India Shirwatkar and Kumar, et al.

position control methods employed. We plan to use force control
methods in future work since it is possible to lower the impact
forces during the touchdown or develop stable bounding behaviors
irrespective of the underlying terrain type.

We have also performed preliminary hardware experiments on
our proposed controller. Fig. 3 shows the keyframes of the robot
traversing slope of 9◦ along with loose terrain made of artificial dry
sand. The robot can keep itself stable when transitioning between
different terrains without toppling over. Finally a more diverse set
of results can be found at: https://youtu.be/La3y-xhWm1U

6 CONCLUSION
This work successfully showed the development of a linear policy-
based walking controller capable of generating robust quadrupedal
motion on planetary terrains such as flat, sloped, rugged, loose,
and low-than-Earth gravity terrains. The end-foot trajectory mod-
ulating policy has been demonstrated to be transferrable across all
terrain transitions. The proposed technique will provide a single
framework for rapidly constructing linear feedback control policies
for any multi-legged robot, thereby significantly simplifying the
controller design and deployment process for planetary exploration
missions.

Even though nonlinear policy parameterizations might result
in better performance, they will have significantly higher compu-
tational requirements. Hence linear policies were considered in
our framework as they have the smallest number of parameters
while showing good performance. The simulation results showed
that our method outperforms the baseline open-loop controller by
reducing slippage and offering high stability. We also observed that
gaits like crawl become more stable with our framework in low
gravity conditions. Preliminary results on our hardware platform
Stochlite are shown to validate our framework. Future work will
include deploying the robot on Lunar and Martian testbeds, per-
forming sinkage analysis, extending the framework to force control
methods, and studying more dynamic gaits such as bounding.

REFERENCES
[1] Philip Arm, Radek Zenkl, Patrick Barton, Lars Beglinger, Alex Dietsche, Luca

Ferrazzini, Elias Hampp, Jan Hinder, Camille Huber, David Schaufelberger, Felix
Schmitt, Benjamin Sun, Boris Stolz, Hendrik Kolvenbach, and Marco Hutter. 2019.
SpaceBok: A Dynamic Legged Robot for Space Exploration. In 2019 International
Conference on Robotics and Automation (ICRA). 6288–6294. https://doi.org/10.
1109/ICRA.2019.8794136

[2] Sebastian Bartsch, Timo Birnschein, Florian Cordes, Daniel Kuehn, Peter Kamp-
mann, Jens Hilljegerdes, Steffen Planthaber, Malte Roemmermann, and Frank
Kirchner. 2010. SpaceClimber: Development of a Six-Legged Climbing Robot for
Space Exploration. In ISR 2010 (41st International Symposium on Robotics) and
ROBOTIK 2010 (6th German Conference on Robotics). 1–8.

[3] M. G. Bekker. 1969. Introduction to terrain-vehicle systems. University of Michigan
Press.

[4] Gerardo Bledt, Matthew J. Powell, Benjamin Katz, Jared Di Carlo, Patrick M.
Wensing, and Sangbae Kim. 2018. MIT Cheetah 3: Design and Control of a
Robust, Dynamic Quadruped Robot. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2245–2252. https://doi.org/10.1109/IROS.
2018.8593885

[5] Katie Byl, Alexander C. Shkolnik, Sam Prentice, Nicholas Roy, and Russ Tedrake.
2008. Reliable Dynamic Motions for a Stiff Quadruped. In ISER.

[6] Jared Di Carlo, Patrick M. Wensing, Benjamin Katz, Gerardo Bledt, and Sangbae
Kim. 2018. Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-
Predictive Control. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 1–9. https://doi.org/10.1109/IROS.2018.8594448

[7] Spenneberg Dirk and Kirchner Frank. 2007. The Bio-Inspired SCORPION Robot:
Design, Control & Lessons Learned.

[8] Marco Hutter, Christian Gehring, Andreas Lauber, Fabian Günther, Dario Belli-
coso, Vassilios Tsounis, Péter Fankhauser, Remo Diethelm, Samuel Bachmann,
Michael Blösch, Hendrik Kolvenbach, Marko Bjelonic, Linus Isler, and Konrad
Meyer. 2017. ANYmal - toward legged robots for harsh environments. Advanced
Robotics 31 (2017), 918 – 931.

[9] Hendrik Kolvenbach, Philip Arm, Elias Hampp, Alexander Dietsche, Valentin
Bickel, Benjamin Sun, Christoph Meyer, and Marco Hutter. 2021. Traversing
Steep and Granular Martian Analog Slopes With a Dynamic Quadrupedal Robot.
arXiv:2106.01974 [cs.RO]

[10] ViktorMakoviychuk, LukaszWawrzyniak, YunrongGuo,Michelle Lu, Kier Storey,
Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and
Gavriel State. 2021. Isaac Gym: High Performance GPU-Based Physics Simulation
For Robot Learning. arXiv:2108.10470 [cs.RO]

[11] Horia Mania, Aurelia Guy, and Benjamin Recht. 2018. Simple random search pro-
vides a competitive approach to reinforcement learning. arXiv:1803.07055 [cs.LG]

[12] Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen,
Vladlen Koltun, and Marco Hutter. 2022. Learning robust percep-
tive locomotion for quadrupedal robots in the wild. Science Robot-
ics 7, 62 (2022), eabk2822. https://doi.org/10.1126/scirobotics.abk2822
arXiv:https://www.science.org/doi/pdf/10.1126/scirobotics.abk2822

[13] Kartik Paigwar, Lokesh Krishna, Sashank Tirumala, Naman Khetan, Aditya Sagi,
Ashish Joglekar, Shalabh Bhatnagar, Ashitava Ghosal, Bharadwaj Amrutur, and
Shishir Kolathaya. 2020. Robust Quadrupedal Locomotion on Sloped Terrains: A
Linear Policy Approach. arXiv:2010.16342 [cs.RO]

[14] Jerry Pratt, John Carff, Sergey Drakunov, and Ambarish Goswami. 2006. Capture
Point: A Step towardHumanoid Push Recovery. In 2006 6th IEEE-RAS International
Conference on Humanoid Robots. 200–207. https://doi.org/10.1109/ICHR.2006.
321385

[15] Maurice Rahme, Ian Abraham, Matthew L. Elwin, and Todd D. Murphey. 2020.
Dynamics and Domain Randomized Gait Modulation with Bezier Curves for
Sim-to-Real Legged Locomotion. arXiv:2010.12070 [cs.RO]

[16] Marc H. Raibert. 1986. Legged Robots That Balance. Massachusetts Institute of
Technology, USA.

[17] Nikita Rudin, Hendrik Kolvenbach, Vassilios Tsounis, and Marco Hutter. 2022.
Cat-Like Jumping and Landing of Legged Robots in Low Gravity Using Deep
Reinforcement Learning. IEEE Transactions on Robotics 38, 1 (Feb 2022), 317–328.
https://doi.org/10.1109/tro.2021.3084374

[18] H. Shibly, K. Iagnemma, and S. Dubowsky. 2005. An equivalent soil mechanics
formulation for rigid wheels in deformable terrain, with application to planetary
exploration rovers. Journal of Terramechanics 42, 1 (2005), 1–13. https://doi.org/
10.1016/j.jterra.2004.05.002

[19] Alessandro Tasora, Radu Serban, Hammad Mazhar, Arman Pazouki, Daniel
Melanz, Jonathan A. Fleischmann, Michael Taylor, Hiroyuki Sugiyama, and Dan
Negrut. 2015. Chrono: An Open Source Multi-physics Dynamics Engine. In
HPCSE.

[20] Brian Wilcox, Todd Litwin, Jeff Biesiadecki, Jaret Matthews, Matt Heverly, Jack
Morrison, Julie Townsend, Norman Ahmad, Allen Sirota, and Brian Cooper. 2007.
ATHLETE: A cargo handling and manipulation robot for the moon. Journal of
Field Robotics 24 (05 2007), 421–434. https://doi.org/10.1002/rob.20193

[21] Zhaoming Xie, Xingye Da, Buck Babich, Animesh Garg, andMichiel van de Panne.
2021. GLiDE: Generalizable Quadrupedal Locomotion in Diverse Environments
with a Centroidal Model. arXiv:2104.09771 [cs.RO]

[22] F Zhou, RE Arvidson, K Bennett, K Iagnemma, C Senatore, R Lindemann, B
Trease, P Bellutta, and S Maxwell. 2013. Simulating Mars Exploration Rover
Opportunity Drives Using Artemis. In 44th Annual Lunar and Planetary Science
Conference.

https://youtu.be/La3y-xhWm1U
https://doi.org/10.1109/ICRA.2019.8794136
https://doi.org/10.1109/ICRA.2019.8794136
https://doi.org/10.1109/IROS.2018.8593885
https://doi.org/10.1109/IROS.2018.8593885
https://doi.org/10.1109/IROS.2018.8594448
https://arxiv.org/abs/2106.01974
https://arxiv.org/abs/2108.10470
https://arxiv.org/abs/1803.07055
https://doi.org/10.1126/scirobotics.abk2822
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/scirobotics.abk2822
https://arxiv.org/abs/2010.16342
https://doi.org/10.1109/ICHR.2006.321385
https://doi.org/10.1109/ICHR.2006.321385
https://arxiv.org/abs/2010.12070
https://doi.org/10.1109/tro.2021.3084374
https://doi.org/10.1016/j.jterra.2004.05.002
https://doi.org/10.1016/j.jterra.2004.05.002
https://doi.org/10.1002/rob.20193
https://arxiv.org/abs/2104.09771

	Abstract
	1 Introduction
	2 Robot Description
	3 Methodology
	3.1 Reinforcement Learning
	3.2 Walking Controller
	3.3 Details of Terramechanics Subroutine

	4 Policy Training and Evaluation
	4.1 Domain Randomization
	4.2 Reward Function

	5 Results
	6 Conclusion
	References

