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Abstract— The use of internet-connected devices, especially
small multi-rotor Unmanned Aerial Vehicles (UAVs), in scien-
tific data gathering and applications, is quite widespread. But
due to limited intervention capability, the UAVs alone fail to
automate agricultural tasks completely. Thereby, we propose
a centralized framework capable of handling a heterogeneous
mixture of UAVs and UGVs to cater to the needs of automating
agriculture efficiently. The framework’s core is a novel heuristic
decision module that creates new tasks by visually analyzing
the farm and solves a vehicle routing problem to allocate it to
agents optimally. It is also equipped with supporting modules
to monitor their operation and, in case of failures, help them
recover autonomously based on the task and agent assessment.
The framework is used in three significant agricultural appli-
cations, namely yield prediction and drought stress detection
in a simulated environment using ROS and Gazebo, and 3D
mapping of a real farm. These applications demonstrate the
use of the multi-agent collaborative framework in identifying
agricultural tasks in a farm and executing them.
Index Terms— ulti-UAS collaboration, Vision based pick and
place, Task planning, Fault Handlingulti-UAS collaboration,
Vision based pick and place, Task planning, Fault HandlingM

I. INTRODUCTION

The world’s population in 2015 stood at 7.3 billion people
and is expected to increase to 8.5 billion by 2030. It requires
a sustainable and efficient farming methods to meet the food
demands with constantly decreasing farmlands. Sustainable
farming also known as precision agriculture has been in
limelight in academia since long back but lacks focus on a
complete autonomous solution. With expansion of internet-
connected devices, new ways to measure and analyze agri-
cultural processes in real-time came into the picture. Internet
of Things (IoT) in agriculture can be considered a viable
solution as it needs constant monitoring and intervention.
Using IoT in agriculture needs appropriate software archi-
tecture that plays a prominent role in optimizing the gain. In
the case of IoT, a drone can act as a mobile data collector and
transfer it to a remote station for processing. In practice also
an aerial vehicle is generally deployed for data collection and
surveillance whereas most of the heavy duty farm operations
are carried out by UGVs. Due to the complexities involved
with autonomous agriculture, an aerial or ground vehicle
alone is not sufficient to carry out agricultural tasks. Hence
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Fig. 1. a) Original Farm (Left) b) Simulated Farm (Right)

a common autonomous platforms is necessary that can serve
as a framework in which multiple heterogeneous IoT devices
and systems can be incorporated and controlled to carry out
tasks jointly. In this work, we propose a heterogeneous multi-
agent framework employed in an agricultural setup with
UAVs and UGVs to carry out precision agriculture tasks
autonomously.

UAVs and UGVs are being deployed for a diverse range
of applications in precision agriculture. Reduction in waste
and chemical emissions increased overall efficiency, and
profitability is some of the best-achieved results. In [1], the
authors use a quadrotor with an on-board RGB camera for
crop monitoring, health assessment, and spraying. Software
architecture built to promote reuse, support farms of various
sizes is proposed in [2]. A framework named SmartFarm
[3] which integrates environmental sensors present in farm
with a private cloud infrastructure that provides farmers
with a secure, easy-to-use, and cost-effective data analysis
system. Similarly, an autonomous multi-sensor UAV system
is proposed for remote sensing, which is adequate for small
fields [4]. An architecture for collective field monitoring by
a group of UAVs is realized in [5]. A swarm of UAVs
is deployed in [6] for spraying fertilizers over agricultural
land. Yield prediction of coffee crops using images from
UAVs is also made in [7]. Indices such as the Normalized
difference vegetation index, which depicts the produce’s
health, are derived from the UAV’s multispectral imagery [8].
We see that The heterogeneous use of UAVs and UGVs is a
promising combination to be applied that has been utilized
as mobile robot UGVs are used to serve as a transport and
recharge station for the UAVs in [9].

Collaborative mapping of construction sites [10] using
both UAV and UGV is also being done. The use of a hetero-
geneous swarm of edge UAVs for remote sensing is used in
[11]. Infrastructure-free cooperative relative localization in
GPS-denied environments [12] can also be realized when
collaborating. A novel collaborative 3D map registration
pipeline is presented in [13] for agricultural applications.

The framework proposed in this paper uses a master-slave
architecture with the master as a base station and agents as



slaves. The framework’s core is a heuristic decision module
that creates new tasks, decides, and optimally allocates it
to agents. The tasks are the series of actions that need to
be performed by the agents over a particular region that
we define as action zones. Action zones can be a pest
infected area, which requires the spraying of pesticides. The
framework is composed of modules such as path planner,
task scheduler, etc., and it can be easily integrated with
specific modules depending upon the tasks. This allows
the framework to be applied to most primary agriculture
operations, from sowing seed to harvesting the produce. The
framework has been deployed in a simulated agricultural
environment based on the actual farm layout, as shown in
Fig. 1.

We discuss our proposed framework in Section 2. Section
3 provides an experimental evaluation to highlight the effi-
cacy of our approach and value due to simplicity. In Section
4, we consider two of the use-cases and simulated the same
in Section 5. Finally, we conclude the paper in section 6 with
remarks and discussion on future work.

II. COLLABORATIVE MULTI-AGENT FRAMEWORK

In this section, we describe the framework and its func-
tional modules:

A. Objective of the Framework

Given n UAVs and m UGVs, the aim is to detect action
zones and deploy these n+m agents to perform their desired
functions in those action zones. The UAVs are equipped
with a camera to capture images. The UGV carries a 6-DOF
manipulator with a sprayer and camera at the end-effector.
Periodically, one of the n UAVs is sent to capture complete
farm’s images in an exhaustive flight path (for example, in
a lawnmower pattern). It streams the captured images back
to the central base station, which in our case is the master.
The base station then processes the imagery to detect action
zones and plans the agents’ paths according to the zone’s
requirements and capabilities, creating a route plan. This
generated plan is sent to the task-scheduler module, which
then schedules the tasks and allocates them to all the agents.
The agent then performs the task and creates a report about
the progress and status of the vehicle. The report is sent to
the master to decide and schedule the next task for the agent.
Furthermore, this framework is also designed to handle minor
faults such as communication loss or task failure. In such
cases, a fault handler module is invoked on both master
and slave to help recover from failure. The architecture and
modules are described in detail in the section below.

B. Components of the Framework

1) Slave Architecture: The proposed architecture (see Fig.
2) with the necessary modules for agents or slave in our case
is described below:

i) Communication Module: It is responsible for monitor-
ing communication between the master and the slave.
If the connection is broken, the module calls the fault
handler for further help to restore the connection.

ii) Agent Handler: It monitors the status of the agent. It
gathers information from various on-board sensors and
generates the status which includes position, battery
health and resources on-board the agent. A tabular
description of agent report is shown in Table 1. The
sub-modules associated with the agent handler are:

a) Localization Module: It fuses the inertial and global
measurements to get an estimate of the pose and
orientation of the agent.

b) Vision Module: It handles the image stream captured
by the camera sensor and streamed back to the master
for further processing to detect the action zones.

c) Status/Health Monitoring: It checks whether the sen-
sors and actuators are operational. It also monitors
the on-board resources such as battery-health and
fertilizer volume.

TABLE I
AGENT REPORT DESCRIPTION

Particular Information Data Type
Pose [x, y, z] [3x1] Array
Orientation [roll, pitch, yaw] [3x1] Array
Battery Health Battery Left (%) Integer
Actuator Health Healthy or not Bool
Sensor Health Healthy or not Bool
Resource Status Quantity Left Float

iii) Task Handler: It is responsible for handling the tasks
sent to the agents. It receives the task and a location
depicting the action zone. Then it uses one of the below-
mentioned task-modules to deploy the agent on the task.
After which it reports an assessment back to the master.
A tabular description of task report is shown in Table 2.
The sub-modules associated with the task handler are:

a) Record: It helps the agent record or map a particular
bounded region on the farm. It records the geo-
tagged and timestamped images at the height closest
to the crops so as to have the highest resolution. The
recorded imagery is then streamed back to the master
for further analysis.

b) Travel: The UAV can traverse from point to point at
a particular height in air whereas, the UGV has to
travel across the rows in grid-wise manner. This sub-
module gets the location of the action zones and helps
the agent traverse the environment while avoiding
obstacles and forbidden zones.

c) Spray: It is designed to precisely spray a controlled
volume of water or chemical at a particular area using
the on-board camera.

TABLE II
TASK REPORT DESCRIPTION

Task Report
Particular Information Data Type
Task Code Record/Travel/Spray [3x1] Array
Task Position [x, y, z] [3x1] Array
Task Progress Percentage(%) Integer



Fig. 2. Slave architecture and its modules

2) Master Architecture: The proposed architecture (see
Fig. 3) with the necessary modules for base station or
master is described below:
i) Communication Module: It operates in the same

manner in both the master and the slave architecture.
ii) Agent Handler: It handles the information received

from the agent about its health and status. Based on
the report received, it decided whether the agent is
operational or not. If operational, the agent is fed
with the next task using the task-scheduler module,
or else the fault handler module is invoked.

iii) Task Handler: It handles the task plan and assesses
whether the assigned task is complete or has failed
to complete. If it has failed, the module invokes the
decision-maker module to decide the next course of
action, or else the agent is allotted the next task using
the task-scheduler.

iv) Decision Maker: This is at the core of the master
decision-making process. This module decides what
needs to be done next with the reports received from
the task and agent handler modules. If all the agents
are free or no new task remains to be allotted, then
the module decides to create new tasks using the
task generator module. Once the action zones are
detected, or new tasks have been created, the module
allocates them to the free agents optimally using the
route planner sub-module, creating a route-map. The
route-map is then sent to the task-scheduler, which
schedules the next task to the agents as soon as a
particular agent’s last task is complete. If any of the
operational agents fail to complete a task, the decision
module is invoked to decide whether to retry or skip
the failed task. This decision is made based upon how
much progress was made on the same.

v) Task Generator: This module is triggered when there
is no new task to be carried out by the agent or the
agents have accomplished the tasks. For instance, a
systematic exploration in a lawn-mover fashion of the
farm is carried out by a UAV to detect the action
zones and create new tasks. The master instructs a

UAV with a given demarcated area to capture close-
up imagery at a particular height and send it back
to the master. The imagery sent is then processed by
the master using the vision module and outputs the
stress zones or measurement zones. This information
is then sent to the route planner to allocate the
agents with the practical tasks according to their
capability/capacity.

vi) Vision Module: Responsible for mapping, detecting
action zones and converting the pixel-based location
into a real-world co-ordinate to be handled by the
route planner. The module is designed for the two
use cases and simulated (See Section IV). The present
framework allows the vision module to be used for
the following tasks.
a) Yield Prediction: Imagery captured from UAV

contains a tree’s view from four different direc-
tions and the top to cover it completely. The aim
is to count the fruits (such as apples) on top of the
green leafy background, as seen in the captured
images (see Fig. 5a). The algorithm uses hue,
saturation, and value in the HSV color space as
visual cues for red apple detection. If the hue
value of a particular pixel lies in the red region,
then the pixel is marked for segmentation. The
segmented object is counted if its area in the
image is also greater than some threshold to reject
some false detections. The count is then used to
estimate the final yield of the farm.

b) Drought Stress Detection: For this, the farm im-
ages are captured from the top view at a par-
ticular height using UAVs. The images contain
leafy ground with some light-colored patches to
depict stressed areas (see Fig. 5b). The images
are divided into three respective color channels.
To detect the stressed areas, gradient change is
monitored in the green channel using a Sobel fil-
ter. Pixel is considered a boundary if the gradient
change lies within a region bounded by a lower
and upper threshold. Upper and lower thresholds



Fig. 3. Master architecture and its modules

are chosen to detect the patch boundary and reject
any other gradient change in the image.

c) Collaborative Mapping: Like drought stress de-
tection, the images of a particular area have been
captured from the top view at a specific height
using UAVs and the crop row using UGV. Agents
are sent periodically with the target waypoints
to record geo-tagged imagery. The module then
employs a novel offline mapping pipeline named
AgriColMap [11], suitable for solving structure
from motion problems in the agricultural domain.
It takes the captured images as the input and
outputs the 3D point cloud. The 3D point cloud
is then annotated with the detected parameters of
the crop. Finally, the point cloud can be used by
the decision-maker to detect action zones and plan
the agents’ routes accordingly.

vii) Route Planner: Given the location of the zones and
agents, the module plans the route using Clarke
& Wright savings algorithm (see algorithm-1) as
our task allocation problem boils down to a multi-
vehicle routing problem. Clarke & Wright’s savings
algorithm [12] plans the route for the agents based
upon the requirements of the action zone and the
capability/capacity of the agents. For the simulation,
we have assumed requirements to be identical at
all action zones and all the agents equally capable.
Generated route plan is then sent to the task scheduler
to handle. An example of a route plan with four
agents (3 UAVs and UGV) and 48 action zones
depicting trees on the grid has been planned using
the algorithm and shown in Fig. 4.

viii) Task Scheduler: The module allocates the task to the
agents sequentially according to the route-plan. If the
previous task has been completed successfully, a new
task is assigned, or else the decision-maker module
is invoked in case of any partial or incomplete task.

ix) Fault Handler: This module is invoked when the
communication with the agent is lost or the agent
has failed. The module is designed to locate and

reconnect/retrieve the agent. The module is in an
elementary state where the failure is restored by
homing the agent and rebooting it. When rebooted,
the master tries to set up the communication link
and sends the last task it failed to complete. In case
of hardware failure, the agent is removed from the
operational list, and the routes are planned again for
the remaining UAVs and incomplete tasks.

III. APPLICATION OF THE FRAMEWORK

In agriculture, from sowing seeds to harvesting fruits,
the significant chunk of tasks can be divided into
sub-tasks as event detection, traveling, and action or
treatment. For instance, automated spraying can be done
by detecting an infected patch of the crop, traveling to
the location, and then treating it with pesticides.
At present, only a recording and a spraying module
have been developed for the proof of concept of the
framework. The actions can relate to anything given
that the agent knows how to perform it. In other words,
it has appropriate hardware and software for the task.
For deploying agents with the right task, a central base
station is brought into play to allocate and assign tasks
to the agents. The central base station can be mobile
(UGV) or stationary.
In the following sections, we describe the different
critical scenarios significant in the agricultural domain
[13], where our framework can be deployed.

A. Yield Prediction

The accuracy of the first crop forecast is essential
for farmers and the entire agricultural sector. Data for
better yield estimates were taken from UAVs using
RGB-based crop height and canopy construction or
multispectral imagery. Yield prediction becomes nec-
essary in those experimental contexts where nitrogen,
phosphorus, or irrigation-related treatment causes more
significant variation on the final yield. UAV yield pre-
diction studies to date have focused on the development
of energy efficiency models. We have primarily focussed
upon the accuracy of the prediction. Hence, more data



Fig. 4. a) Route Plan for the agents for 48 locations (Left) b) Distance Matrix depicting distance between locations i and j (Right)

Algorithm 1 Clarke & Wright Savings Algorithm
i) Compute the savings

s(i, j) = d(D, i) + d(D, j)− d(i, j) (1)

for every pair (i, j) of demand points where d(i, j)
is the distance between point i and j and D denotes
depot or starting point.

ii) Rank the savings s(i, j) in descending order of
magnitude, creating the ”savings list.” Start with the
topmost entry in the list (the largest s(i, j)).

iii) For the savings s(i, j) under consideration, include
the link (i, j) in a route if no route constraints will
be violated through the inclusion of (i, j) in a route,
and if any one of them applies:
A) Neither i nor j has already been assigned to

a route. In that case, a new route is created,
joining both i and j.

B) Exactly one of the two points (i or j) has
already been included in an existing route. The
point is not interior to that route (a point is
within the route if it is not close to depot D in
the sequence of points). In that case, the route
(i, j) is added to that same route.

C) Both i and j have already been included in two
different existing routes, and none of the points
is interior to its route. In that case, the two
routes are joined.

iv) If the savings list s(i, j) is completely traversed,
stop: the solution consists of the joined routes using
step 3. otherwise, return to Step 3 and process the
next entry.

points are recorded to estimate the yield. Although, a
UGV with its close imaging capability can significantly
enhance the prediction accuracy [17]. This calls for a
collaborative framework to deal with the above.
For this purpose, a patch of land (can be whole agricul-
tural land) is selected by demarcating the vertices with
the GPS co-ordinates. The decision-maker is then used
to plan the path for the agents using the path planner

module. Once the route plan is generated, the task is
to reach the targets and record the images to cover the
whole patch. This imagery is then sent to the master to
detect and quantify the produce.
Counting or detecting produce on-farm is prone to oc-
clusion and false detection. Hence it is used as a marker
of the density of the produce. For this purpose, we
have assumed three levels of density as low, moderate,
and high. Initially, this density classification is based
on simple heuristics on the count. But as we get more
information after harvesting, this heuristics is updated.
This explains how many high, medium and low density
trees are there on the field. The farmer can use this
information to plan the distribution of fertilizer and
irrigation, perform variable crop thinning, and improve
operations by increasing efficiency, reducing inputs, and
increasing yield over time in underperforming sections.

B. Drought Stress Detection

The sustainable and optimal use of water resources
through precision irrigation techniques constitutes the
most critical challenge in the agricultural sector. Preci-
sion irrigation bears importance for combating water
scarcity and curb salinity and loss of nutrients. The
method is also integral in preventing the lower-level
regions from water clogging and ensuring sufficient
water supply in higher-level areas.
This is generally done using thermal imaging cameras as
water transpiration directly impacts the surface temper-
ature and color. An RGB camera on UAV can detect the
discoloration, followed by the site inspection by UGV
with a thermal camera on-board. Studies suggest using
the crop water stress index (CWSI) to determine the
extent of stress [15] and the amount of water to be
sprayed.
In our case, To detect the drought stress zone, the UAV
is sent in a lawnmower pattern to record the images
from the top view. The geo-tagged imagery is then
sent to the base station to process and detect the zones
by segmenting them based on the ground’s color. The
difference in the shade is then used to calculate the
quantity of water required. The patch is bounded by a



contour whose center is chosen to be the target location.
To generate the location, a pixel to GPS conversion is
done, and finally, the action zone is created. The action
zone is then allotted to an agent to reach, detect the
contour and spray the water over the patch based on
the requirement.

C. Collaborative Mapping

Mapping in an agricultural domain done is a routine
manner recording the images of the farm periodically.
The imagery is then processed offline to generate a 3D
point cloud for the same. For this, a structure from a
motion library named AgriColMap [11] can be used,
which takes images (both aerial and ground imagery)
as input and outputs the 3D point cloud solving a
large displacement optical flow problem. The 3D point
cloud thus generated can be annotated with crop-related
information such as crop density and weed pressure,
necessary for decision making.
Our framework provides the necessary unified envi-
ronment for sharing information across the agents and
master for such a collaborative library to work smoothly.
The decision-maker can also use this 3D point cloud
to plan the route for UGV more efficiently. There can
be different types of obstacles tackled in an agricultural
setup, namely soft and hard obstacles. The soft obstacles
can be breached by the agents, whereas the hard ones
have to be avoided. For instance, the UGV might
consider a weed patch (soft obstacle) as a crop (hard
obstacle) while traversing the rows. In that case, we
can use the annotated 3D map to detect the weed patch
and plan the path according to a soft obstacle.

IV. SIMULATION SETUP AND RESULTS

The collaborative mapping module is tested in a real
farm whereas, yield prediction and drought stress detec-
tion have been tested in a simulated environment due
to the farm’s unavailability during the pandemic. The
simulations are visualized using Gazebo 9.11 and ROS
Melodic with PX4 Autopilot for UAV. The following
environment is set up to simulate an apple orchard with
3 UAVs and one UGV.

A. Farm

The simulated farm is of the size of 25m x 25m with
evenly spaced fruit trees in a grid fashion. The spacing
or the row-width considered is 1.5m sufficient for the
UGV to travel across. Two sides of the farm are as
shown in Fig. 5.

Fig. 5. a) Simulated Apple Tree (Left) b) Simulated Farm (Right)

B. UAVs and UGVs

.
The UAVs (see Fig. 6a) use the IRIS drone model. It
is a quadrotor and is equipped with two cameras, one
facing downwards for an aerial view and one on the
front for close-up imagery acquisition.
For simulating the UGV (see Fig. 6b), the model of
Husky by Clearpathrobotics is ported into the Gazebo
environment. The UGV is integrated with a UR5 ma-
nipulator with a sprayer as an end effector. The UR5
has a reach radius of 850 mm and a payload of up to 5
kg. Two monocular cameras are employed in the UGV,
one forward-facing and another downward facing. The
forward-facing one aids in search and exploration, while
the downward-facing camera on the manipulator is used
for orienting the manipulator for spraying operations.
The UGV and UAV models are shown in Fig. 6.

Fig. 6. a) Simulated UAV Model b) Simulated UGV Model

C. Yield Prediction

This module is comprised of two types of machine
learning models. The first one is YOLOv5 a deep-
learning object detection model to detect and count the
visible fruits in the tree. After getting some preliminary
fruit count a linear regression model is applied on top
of it to accurately map those count with yield. The
YOLOv5 model is trained with a mango plantation
dataset [ref]. The images are annotated manually with
riped fruits and trained for 250 epochs with a batch size
of 5 images. The final mean Average Precision (mAP)
of the trained model came out to be around 0.943. The
model is then used to determine preliminary count of
fruits and results of the same can be found below. The
next task is to train the regression model with the true
yield of each tree and farm.1

Fig. 7. Yield Prediction: Input Image (Left) Counted Fruits (Right): 41



Fig. 8. Yield Prediction: Input Image (Left) Counted Fruits (Right): 56

D. Drought Stress Detection

In the same simulation environment, the ground is
created with some light patches depicting the water-
stressed areas. The stress detection pipeline is very
similar to the yield predictor. After the action zones
are detected, an agent is sent to the location to detect
the contour and irrigate it precisely. Stress detection for
the farm is tested, and red blobs are drawn to depict the
zones (see Fig. 11).

Fig. 9. a) Input Image (Left) b) Generated 3d Point Cloud (Right)

E. Collaborative Mapping

The mapping pipeline has been tested on the images
(see Fig. 12a) recorded from a farm near Bangalore,
India. The vision module of a master then processes
the imagery to generate the point cloud. The point cloud
thus generated can be seen in Fig. 12b.

Fig. 10. a) Input Imagery (Left) b) Generated Point Cloud (Right)

V. CONCLUSIONS

The proposed framework can generate, schedule, and
monitor the tasks allotted to the agents. The above two
cases show how our framework can be deployed in but
not limited to agricultural land. It can be deployed in
similar scenarios like building construction, mapping,
etc. Only the onboard task modules need to be defined
for the particular task, as shown in the two cases con-
sidered. Simulation results finally confirm the potential
of using such a collaborative framework in agriculture.
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