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Abstract. This paper presents a methodology for the composition of complex
dynamic behaviors in legged robots, and illustrates these concepts to experimen-
tally achieve robotic dancing. Inspired by principles from dynamic locomotion,
we begin by constructing controllers that drive a collection of virtual constraints
to zero; this creates a low-dimensional representation of the bipedal robot. Given
any two poses of the robot, we utilize this low-dimensional representation to con-
nect these poses through a dynamic transition. The end result is a meta-dynamical
system that describes a series of poses (indexed by the vertices of a graph) to-
gether with dynamic transitions (indexed by the edges) connecting these poses.
These formalisms are illustrated in the case of dynamic dancing; a collection of
ten poses are connected through dynamic transitions obtained via virtual con-
straints, and transitions through the graph are synchronized with music tempo.
The resulting meta-dynamical system is realized experimentally on the bipedal
robot AMBER 2 yielding dynamic robotic dancing.

1 Introduction

The problem of realizing different motion behaviors (or tasks) and switching between
these different behaviors in robots has been well studied [6],[11]. Examples of tech-
niques employed include the elastic strip framework for robot manipulators [6], the de-
cision theoretic approach for mobile robots [5] and Eigen behaviors for generic robots
[9]. In particular, the elastic strip framework is used to deviate from original preplanned
tasks to reactively avoid obstacles while allowing for smooth transitions; the decision
theoretic approach is used for mobile navigation; and Eigen behaviors are used to learn
the tasks themselves. The resulting behaviors (or motion primitives) obtained through
these methods are important in meeting different task requirements like pick and place,
assembly, but have conclusively failed in applications like legged locomotion which re-
quire dynamic stability and handling of instantaneous discrete transitions (foot strikes).

While different locomotion behaviors have been obtained in legged robots [10, 20,
19] individually, formally composing these primitives in one single format and realiz-
ing them on robots is still a subject in its infancy. In [16], a method for composing stair
climbing and flat ground walking behaviors on a bipedal robot in simulation was pre-
sented; importantly, in this work a formalism for composing these dynamic behaviors
was presented: meta-hybrid systems. Other methodologies have also been considered
which show similar characteristics including [15] which utilized state machines to nav-
igate over rough terrain and [18] which applies reinforcement learning techniques to
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Fig. 1: The bipedal robot AMBER 2 (left), configuration angles (middle), and virtual
constraints (right).

switch between behaviors and thus navigate varying ground slopes. Motivated by these
constructions and the need to extend them beyond locomotion, this paper explores an
approach to achieving dynamically stable advanced locomotion behaviors on bipedal
robots by considering the problem of obtaining dynamic dancing on the bipedal robot
AMBER 2 (see Fig. 1).

Robotic dancing has been achieved in the past by copying the movements of hu-
man motions through their realization as trajectories that ensure static stability [4],[14].
Robotic dancing has also been utilized in the context of social interaction [12], where
special emphasis was given to synchronizing the rhythmic movements with the music.
But these works were mainly focused on maintaining the stability of the robot while re-
alizing dancing for the purposes of entertainment. With the goal of placing more empha-
sis on establishing dynamically stable motion behaviors that strictly satisfy time con-
straints (tempo of a music), this paper presents a methodology of composing dynamical
systems to yield meta-dynamical systems. In particular, different poses are represented
as the vertices of a directed graph and, according to the edges of this graph, dynamic
transitions are created that connect these poses. To achieve this dynamic behavior, an
optimization problem is presented for generating dynamic transitions through methods
motivated by human-inspired control [2, 3, 20, 21]. In particular, virtual constraints are
considered that create a low-dimensional representation of the robot through zero dy-
namics [19]. These yield desired trajectories of the robot (parameterized by the phase
variable) that can be therefore designed to dynamically transition between robot poses.
Creating a low dimensional representation facilitates the ease of constraining the tim-
ing of these behaviors with a simple manipulation of a phase variable (position of the
hip). The end result is a methodology for dynamically composing behaviors, designed
specifically with a view toward robotic dancing.

The paper starts with a discussion of modeling and control of AMBER 2 in Sec-
tion 2. Two phases, single support (SS) and double support (DS), are considered and
described. A sequence of poses is formulated along with corresponding desired tran-
sitions between these poses. These are discussed in Section 3 along with dynamic
transitions which are designed through virtual constraints, with the end result being



Fig. 2: AMBER 2 with the boom and electronics. The boom restricts motion to the
sagittal plane. As shown in the figure: (1) Counterweight used to balance the boom
around the pivot, (2) Controller module where the walking algorithm is running, (3)
The boom, (4) Boom support structure which keeps the torso horizontal by using a
parallel four-bar linkage mechanism, (5) The bipedal robot AMBER 2.

a meta-dynamical system for dancing. Finally, to practically implement these behaviors
on AMBER 2, Section 4 describes how desired angles and angular velocities are recon-
structed from the zero dynamics through a novel reconstruction process. The dynamic
transitions are synchronized with the music tempo through the parameterization of time
used to define the virtual constraints. The end result is the experimental realization of
dynamic robotic dancing on AMBER 2 (a video of the dancing can be found at [1]).

2 AMBER 2 Model and Control

This section will provide a short description of the bipedal robot used, AMBER 2, to
realize dynamic dancing. This section will also show the control law used for tracking
the desired angles and velocities. AMBER 2 is a 2D bipedal robot with seven links (two
calves, two thighs, two feet and a torso, see Fig. 1. AMBER 2 is the second generation
and an expansion upon its predecessor, the non-footed (point feet) bipedal robot, AM-
BER 1 (see [20]). Each of the joints are actuated by brushless DC (BLDC) motors. In
addition, the motion of AMBER 2 is restricted to the sagittal plane via a boom Fig. 2.
The boom is fixed rigidly to a rotating mechanism, which allows the biped to walk in
a circle with minimum friction. In addition, counterweights are provided to cancel the
weight on the robot due to the boom. The controller modules are remotely connected to
the stationary power supply with the help of slip rings located below the pivot.



2.1 Robot Dynamics

Due to the changes of contact points on the foot throughout the course of the dance,
generalized coordinates are naturally used to characterize the robot. Specifically, the
configuration space, Q ∈ Rn is represented in coordinates as θ = {ψ0,θb}, where the
extended coordinate ψ0 ∈ R represents the rotation angle of the body fixed frame with
respect to a fixed inertial frame R0; here θb = [θsa,θsk,θsh,θnsh,θnsk,θnsa]

T , θb ∈ Rb

denotes the body coordinates of the robot as shown in Fig. 1. Note that the translational
coordinates px, pz are also shown in Fig. 1, which are not considered in the dynamics
since the stance toe is assumed to be pinned to ground throughout the course of dancing.
For AMBER 2, n = 7, b = 6, i.e., θb ∈ R6 and θ ∈ R7.
Continuous Dynamics. The Lagrangian dynamics for this n-DOF robot is obtained as:

M(θ)θ̈ +H(θ , θ̇) = Bu, (1)

with the notations M ∈ Rn×n is the mass inertia matrix, H ∈ Rn is obtained from Cori-
olis, Centrifugal and gravity forces apparent from the standard EOM for rigid bodies.
u ∈ Rk is the torque input with k the number of inputs, and B ∈ Rk×k is the mapping
from torque to joints. For AMBER 2, k = 6.

With the multiple foot behaviors that can be realized, we know that the feet cannot
go below ground. The dynamics need to be realized through the use of holonomic con-
straints which constrain both heel and toe of the non-stance foot whenever they are in
contact with ground. These holonomic constraints are enforced in the following manner.

M(θ)θ̈ +H(θ , θ̇) = Bu+ JT
shFsh + JT

nstFnst + JT
nshFnsh, (2)

where Ji(θ) is the Jacobian of specific contact points i ∈ {sh,nst,nsh} corresponding
stance heel, non-stance toe and non-stance heel respectively. Fi(θ , θ̇), which are the
reaction forces due to the holonomic constraints, are defined for each domain based on
the contact conditions of the heel and toe. Note that Fi = 0 if there is no contact with
ground. Fi can be explicitly derived from the states x and the controller u by differen-
tiating the holonomic constraints twice. The details are omitted here and can be found
in [13]. If Fnst = 0, Fnsh = 0 and Fsh > 0, then a fully actuated condition of the robot is
realized.
Relabeling. If the robot takes a step, i.e., after the non-stance leg swings forward and
hits the ground, it is convenient to swap the stance and non-stance legs so that the same
motion primitive can be realized without having the need to change the controller for
the robot. Therefore, at the end of every step relabeling of the angles are done which is
considered a discrete transition in a formal model.

2.2 Control

Since the objective is to achieve dancing, a convenient step is to make the joint angles
track a set of trajectories. We would like to generalize this by picking a vector of l
functions of joint angles, referred to as actual outputs ya, which we want to track termed
the desired outputs yd . The objective is to drive the error y = ya−yd→ 0. These outputs



are also termed virtual constraints in [19]. The outputs are picked such that they are
relative degree two outputs. In other words, ya will be functions of joint angles, and not
angular velocities.

We first introduce the actual set of outputs (virtual constraints) which are indepen-
dent (as motivated by [2]): the linearized hip position, i.e., linearization of the horizontal
hip position (calculated from calf length Lc and thigh lenghth Lt ) w.r.t. the stance toe of
the robot:

δ phip =−(Lc +Lt)(ψ0 +θsk +θsa)−Ltθsk; (3)

the stance ankle angle, θsa; the stance knee angle, θsk; the non-stance knee angle, θnsk;
the hip angle, θhip = θnsh− θsh; the torso angle, θtor = ψ0 + θsa + θsk + θsh; and the
non-stance foot angle, θns f = ψ0 +θsa +θsk +θsh−θnsh−θnsk−θnsa.

We now introduce the Canonical Walking Function (CWF) which was first intro-
duced in [2] to realize human-like walking in robots [20]. The CWF is given by:

ycw f (t,α) = e−α4t(α1 cos(α2t)+α3 sin(α2t))+ ...

α5 cos(α6t)+
α2α4α5

α2
2 +α2

4 −α2
6

sin(α6t)+α7. (4)

This CWF will be used to formulate our desired outputs with the parameters α dictating
the shape of the trajectory, but it is useful to establish a relationship between time and
the linearized hip position through a parameterization:

τ(θ) = (δ phip(θ)−δ phip(θ
+))/νhip, (5)

which relates the hip position and time. νhip is the hip velocity. In other words, the robot
moving forward can be seen as increasing hip position or an increase in time. Similarly,
the robot moving backward can be seen as hip position reducing or the parameterization
of time going in reverse. Note that θ+ represents the robot configuration at the begin-
ning of one step which can be defined such that parameterized time is zero at initial hip
position. This parameterization can then be utilized to directly get the initial configu-
ration of the robot from the parameters α which helps in reducing computation of the
trajectory optimization parameters (see [2]).

Single Support and Double Support. There are two types of phases which will be
considered in the paper, single support SS (when one foot is flat on ground) and double
support DS (when both the feet are always on ground). There are other phases like un-
deractuation where only the stance toe is on the ground, which also can be modeled but
are more complicated to analyze and are therefore omitted from the paper. Depending
on the contact conditions being enforced, we get control systems associated with the
single support and double support phases, denoted by ( fSS,gSS) and ( fDS,gDS), respec-
tively (see [21]).

Single Support. In the single support phase, the foot angle ψ0 = 0, and the non-stance
foot is always above ground. Picking only the base coordinates θb, l = 5 desired outputs,



yd
SS : R6→ R5 and 5 actual outputs, ya

SS : R6→ R5 are considered:

ya
SS(θb) =


θsk
θnsk
θhip
θtor
θns f

 , yd
SS(τ(θ),αSS) =


ycw f (τ(θ),αsk)
ycw f (τ(θ),αnsk)
ycw f (τ(θ),αhip)
ycw f (τ(θ),αtor)
ycw f (τ(θ),αns f )

 , (6)

where τ is a function of the configuration θ , as defined in (5), and the desired outputs are
functions of θ and αSS = [αsk,αnsk,αhip,αtor,αns f ]

T . Therefore, the desired trajectories
are a function of (νhip,αSS) ∈ R36. It is also important to note that the actual output
vector ya

SS is a linear function of the angles: ya
SS = HSSθ , with HSS ∈ R5×6 being the

transformation matrix. Since, ψ0 = 0, θ = [0,θ T
b ]

T for single support phase.
The objective of the controller is to drive the outputs ySS = ya

SS− yd
SS to zero, i.e.,

ySS → 0. This can be achieved by using a feedback linearizing controller (see [17]),
which involves using the model of the robot. Due to inaccuracies in the model param-
eters and difficulty in identification, we could instead use a simpler controller, e.g. PD
controller, which does not guarantee convergence to zero, but will ensure minimum
tracking error provided sufficient gains are used. Firstly, we define the following coor-
dinate1:

ξSS =−(Lc +Lt)(θsa +θsk)−Ltθsk =CSSθb, (7)

where CSS ∈ R1×6 is the row vector of constants. Note that ξSS derived here is same
as (3) with ψ0 omitted. If the controller used is expected to achieve zero tracking error,
i.e., ya

SS−yd
SS = 0, then the desired joint angles θ̇ d

SS ∈R6 and velocities θ d
SS ∈R6 of the

robot for the single support phase which realize this equality can be obtained as:

ya
SS = yd

SS =⇒
[

CSS
HSS

]
θ

d
SS =

[
ξSS
yd

SS

]
. (8)

Therefore, the desired angle configuration and the angular velocities are:

θ
d
SS =

[
CSS
HSS

]−1 [
ξSS
yd

SS

]
, θ̇

d
SS =

[
CSS
HSS

]−1
[

1
∂yd

SS
∂τ

]
ξ̇SS

νhip
. (9)

The PD controller can thus be defined as:

upd
SS =−K p

SS(θb−θ
d
SS)−Kd

SS(θ̇b− θ̇
d
SS), (10)

where K p
SS, Kd

SS are the proportional and derivative gains respectively.
Double Support. The double support phase adds extra constraints to the robot like
friction, pinning conditions (holonomic constraints [13]) and normal forces, which will
constrain the dynamics of the robot. The actual and desired outputs for the robot can be

1Note that the motivation for this coordinate is given by Partial Zero Dynamics as considered
in [3].



defined similar to (6). In the double support phase, the stance ankle angle θsa is added
as:

ya
DS =

[
θsa
ya

SS

]
, yd

DS =

[
ycw f (τ(θ),αsa)

yd
SS

]
, (11)

where ya
DS : R7→ R6, yd

DS : R7→ R6, αDS = [αsa,α
T
SS]

T , with αDS ∈ R43. The actual
outputs can also be written as ya

DS = HDSθ , with HDS ∈ R6×7. Since the actuators have
the potential to fight each other due to overactuation, a feedback linearizing controller
will not necessarily yield exponential convergence:ya

DS− yd
DS→ 0. However, since the

objective of the controller during the double support phase is to achieve dynamic be-
haviors in the robot to realize a dancing sequence, the convergence of the outputs to
zero is ignored. Similar to (3), the following coordinate is defined:

ξDS =−(Lc +Lt)(ψ0 +θsk +θsa)−Ltθsk =CDSθ , (12)

where CDS ∈ R1×7 is the row vector of constant terms. Having obtained the expression
for ξDS, the desired joint angles and velocities can be defined as:

θ
d
DS =

[
CDS
HDS

]−1 [
ξDS
yd

DS

]
, θ̇

d
SS =

[
CDS
HDS

]−1
[

1
∂yd

SS
∂τ

]
ξ̇DS

νhip
. (13)

With K p
DS, Kd

DS as the proportional and derivative matrices, the PD controller is:

upd
DS =−K p

DS(θ −θ
d
DS)−Kd

DS(θ̇ − θ̇
d
DS), (14)

Note that, both these matrices are not square since upd
DS ∈ R6. In fact, the first row and

column of the gain matrices are zeros.

2.3 Configuration Zero Dynamics

For the single support phase, with the feedback linearizing controller (see [17]) being
applied, the outputs ySS are exponentially driven to zero. The control system ( fSS,gSS)
will exhibit zero dynamics. In other words, we have the following restriction of the
dynamics to the zero dynamics surface given by:

ZSS = {(θ , θ̇) : ySS(θb) = 0,L f ySS(θb, θ̇b) = 0,ψ0 = 0, ψ̇0 = 0}. (15)

This restriction of the dynamics to a surface enables us to connect different motion
primitives of the single support phase in a way such that the transition between do-
mains occurs without change of ySS

2. In other words, the transition will be smooth.
Motivated by the desire to relax the derivative condition in (15), we introduce the no-
tion of configuration zero dynamics defined to be:

CZSS = {(θ , θ̇) : ySS(θb) = 0,ψ0 = 0}. (16)

2Note: The construction of the PD controller defined in (7) through (10) is based on the notion
that the desired angles and velocities: (θ d

SS, θ̇
d
SS) ∈ ZSS.



For the double support phase, due to geometric constraints, it is not possible to
realize zero dynamics. But, it is possible to connect a motion primitive with the single
support phase due to the choice of controller. The concept of configuration zero dynam-
ics plays an important role in the context of dancing, since when switching between a
large collection of surfaces, if the configuration zero dynamics constraints are ensured,
this allows for a transition without a sudden change in desired angles. If the Zero Dy-
namics constraints are ensured, then it allows for a smooth transition (jerk free) from
one desired trajectory to other. This will be utilized in the next section through the com-
position of Configuration Zero Dynamic surfaces to allow for minimum jerk transitions
between domains. In addition, this constraint will be independent of the speed in which
the transition is executed.

3 Meta-Dynamical Systems

To achieve dancing, the primary goal is to connect trajectories, i.e., desired outputs yd ,
for each motion primitive; that is, we wish to compose dynamical systems. To this end,
this section will present the notion of meta-dynamical systems which give a formalism
to the notion of composition. We begin by considering different poses of the robot that
will be connected through dynamic transitions.
Pose. A pose of a robot is a configuration θ , which is intended to be realized in the robot.
In other words, a pose is just a captured frame of a robot while in motion. For example,
a robot with hip forward and low and both feet flat is a crouch, and is considered a pose
of the robot. There are several possible poses that the robot can assume. If the stance toe
is always on ground (since jumping is not considered), the three remaining points (non-
stance toe and heel and stance heel) can be either in contact or not. Therefore, there are
eight possible general cases for pose generation. Accordingly, we will consider: front
heel lift (FHL), front toe lift (FTL), back heel lift (BHL), all feet flat on ground (FF),
swing (S) with stance foot being flat on ground, double heel lift (DHL), front toe and
back heel lift (FTBH), and underactuation (UA) with only stance toe in contact with
ground. All the eight generic poses are shown in Fig. 3.

It is important to note that there could be more than one type of Back Heel Lift,
Front Toe Lift, and other combinations as well. In other words, there are more than
eight types of poses. For example, we could have two different kinds of flat footed
poses, where the vertical hip position is high for one and low for the other. This will be
discussed further in Section 4 where the poses of dancing on AMBER 2 are introduced.
If a set of poses θ1,θ2, . . . ,θi is considered, then dancing is achieved by just executing
dynamic transitions between these poses.
Dynamic Transition. Let x = (θ T , θ̇ T ) ∈R2n, and ẋ = f (x) be a dynamical system Let
Φ(t;x0) be the solution to ẋ = f (x) at time t ∈R with initial condition x0, and let πθ be
the canonical projection πθ (x) = θ .

Definition 1. A dynamic transition between two poses, θ0 and θ f , is a solution Φ(t;x0)
to the dynamical system ẋ = f (x) such that there exists a point x0 ∈ R2n and a time
t f ≥ 0 with πθ (Φ(0;x0)) = θ0 and πθ (Φ(t f ;x0)) = θ f

This definition allows us to formally introduce meta-dynamical systems:



Fig. 3: Eight generic poses of a robot based upon possible contact points.

Definition 2. The meta-dynamical system is defined as a tuple:

M= (Γ ,P,T), (17)

– Γ is a directed graph given as: Γ = (V,E), where V is the set of vertices describing
desired poses realizable on the robot, and E represents transitions between these
poses. We denote the source and target of an edge e ∈ E by source(e) ∈ V and
target(e) ∈ V.

– P is the set of poses given by: P= {Pv}v∈V, where Pv = θv ∈ Rn.
– T is the set of dynamic transitions: T = {Te}e∈E, where Te = Φe is the dynamic

transition between the poses θsource(e) and θtarget(e).

Creating dynamic transitions. Suppose we want to construct a meta-dynamical sys-
tem. Assume we are given a directed graph Γ with the set of poses P. Using the con-
structions given in Section 2.2, we can construct a set of dynamic transitions T. Given
that the desired outputs yd are obtained through canonical walking functions as de-
scribed in (6) and (11), we propose the following optimization problem for creating a
dynamic transition Te for a particular edge e ∈ E:

(ν∗hip,α
∗) = argmin

(νhip,α)∈Rd
CostD(νhip,α,νr

hip,α
r) (18)

s.t.
[

yd
Phase(0,α)

yd
Phase(τmax,α)

]
=

[
HPhaseθ0
HPhaseθ f

]
, (CZD)

where νr
hip,α

r are the reference parameters, Phase ∈ {SS,DS} denotes whether the
robot is in single support or double support phase, and τmax is the time at the end of the
step which is computed in the following manner:

τmax = (CPhaseθ f −CPhaseθ0)/νhip, (19)

with νhip being the hip velocity, as introduced in (5). The cost of dancing (or objective
function), CostD, is the least squares error relative to reference data:

CostD = ∑
i
[yd(t[i],α)− yd(t[i],αr)]T [yd(t[i],α)− yd(t[i],αr)], (20)



BHL S2

Fig. 4: Figures showing the initial pose (left) and the final pose (right) for crouch re-
spectively. The red arrows are the edges.

where the reference used is either obtained from human data which have discrete heel
toe behavior, or obtained from the formerly established walking gaits which were prov-
ably stable and experimentally realized on robots (see [20],[21]). Note that in some of
the transitions for dancing where there was no reference trajectories, a zero cost will be
used. The defining aspect of this paper is using the constraints (CZD), which realizes
configuration zero dynamics and is thus instrumental in being able to compose different
motion primitives to form a meta-dynamical system. This follows from the fact that the
end result of the optimization is a dynamic transition; for example, if Phase = SS, the
parameters obtained from the optimization (ν∗hip,α

∗), utilized in the feedback lineariz-
ing controller and applied to the control system ( fSS,gSS), yields a dynamic transition.
Example: dynamic leg swing. To illustrate meta-dynamical systems, we will consider
a simple example consisting of two poses: back heel lift (BHL) and swing (S) (see
Fig. 4). Due to space constraints, it is not possible to show how the optimization prob-
lem was formulated for each and every transition in case of dancing. Therefore, we
consider a specific example of transition from pose PBHL to PS2, i.e., from back heel
lift to swing. The two poses with the transition is depicted separately in Fig. 4. We can
accordingly define the meta-dynamical system in the following manner:
Discrete structure and poses. The graph is given by:

Γ = (V,E), V= {S,BHL}, E= {S→ BHL,BHL→ S}. (21)

The set of poses is given by: P = {Pv : v ∈ V}. The set of transitions is given by:
T = {Te : e ∈ E}. The edges are depicted by the arrows shown in Fig. 4. Note that
the above example can have more than 2 edges depending on the how the transitions
between poses are obtained. We will now introduce the optimization problem which
realizes the dynamic transitions, Te, from one pose to the other.
Dynamic transitions. Having obtained the desired angles and angular velocities (9),(13),
we can now discuss the transition optimization which yields the motion primitive for
the swing action.

The cost for the optimization was evaluated by obtaining the least squares fit with
the multi-domain walking trajectory obtained on AMBER2 as found in [21]. The time
parameter was picked such that only the swing portion of [21] was considered for the
cost. In other words, the value τ was constrained in the optimization to match the refer-
ence trajectories. Additional constraints, like sufficient foot clearances on ground, were
imposed throughout the step. The knee angle was also constrained to be within a cer-
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Fig. 5: Tiles of a leg swing behavior consisting of a transition from back heel lift to
swing pose. The top tiles illustrate the behavior of the robot achieved in simulation, and
the bottom tiles show the same behavior realized experimentally on AMBER 2.

tain limit to ensure low torque is utilized. That is, the final optimization (with physical
constraints) is given by:

(ν∗hip,α
∗) = argmin

(νhip,α)∈R36
CostD(νhip,α,νr

hip,α
r) (22)

s.t. (CZD)
τmax < 0.4

min(hnst)> 0
min(θnsk)> 0,

where the resulting optimal solution yields the parameters for the desired trajectories
represented through the outputs. Since the constraints are non-linear, the optimization
method used is active-set through MATLAB. If this optimization were to be done on-
line, a learning technique like [8] could have been used instead. But, this does not yield
dynamically stable trajectories which are necessary for maintaining balance. When this
is applied on the robot through trajectory reconstruction (10), the swing of the non-
stance leg is observed as shown in Fig. 5. The same controller was also applied on AM-
BER 2, both in simulation and experiment, with tiles of the resulting behavior shown in
Fig. 5.

4 Dynamic Robotic Dancing on AMBER 2

This section presents the process of realizing dynamic dancing in AMBER 2 by using
the methods introduced in this paper. We will not consider the cases UA, DHL, FTBH
from Fig. 3 since they require higher torque and are relatively difficult to realize in the
robot. Therefore, we will consider the remaining five generic cases of the feet behavior
for generating the pose. We will consider three types of front heel lift: FHL1, FHL2,
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Fig. 6: Oriented graph for the meta-dynamical system considered for AMBER 2 in order
to obtain dynamic dancing.

FHL3, one front toe lift: FTL, three types of flat-footed poses: FF1, FF2, FF3, two types
of swing poses: S1,S2, and finally one back heel lift pose: BHL. All ten poses are shown
in Fig. 6. The end result is an oriented graph Γ = (V,E), where:

V= {FHL1,FHL2,FHL3,FTL,FF1,FF2,FF3,S1,S2,BHL}, (23)

and E is the set of red arrows in Fig. 6.
For generating the dynamic transition between poses, the optimization (18) was

accordingly solved. Since it was not necessary to optimize trajectories to transition
from every pose to every other pose, we considered 20 edges (or optimized dynamic
transitions) which satisfied configuration zero dynamic (CZD) constraints. Therefore,
we consider the set of edges as shown in Fig. 6, with the resulting dynamic transition:
T= {Te : e∈E}, obtained through the optimization in (18). Note, additional constraints
were also implemented in the optimization to realize different behaviors varying from
constraining the angles, to allowing sufficient foot clearance, to constraining the veloc-
ities, to constraining final parameterized time: τmax.
Synchronizing with music. The particular method employed to synchronize the behav-
iors of the robot with the music is to utilize the parameterization of time (5) to change
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Fig. 7: Experimental realization of the meta-dynamical system on AMBER 2, resulting
in dynamic robotic dancing (which can be viewed at [1]).

the hip position of the robot within a prespecified tempo period. Since τ is a direct
function of the hip position, a change in τ causes a corresponding change in desired
trajectories of the robot (as represented by the outputs parameterized by τ) resulting in
synchronization between the beats of the music and the dynamic transitions. Dynamic
programming methods as described in [7] are used to generate music tempo speed for
a given song.
Sequence Design. To design a proper dancing sequence to the chosen music, the tempo
period ∆T , which was obtained from the beats, is utilized as the fundamental period.
For AMBER 2 dancing, each sequence input which executes the transition from one
pose to the other is given in the following format:

S= {α,τmax,ndance,m0,m1,n f reeze,Phase,Leg}, (24)

where α is the set of parameters specifying the desired trajectory. The starting pose is
specified by the time parameter, m0τmax, and the ending pose is specified by m1τmax.
Note that τmax is the maximum time parameter for current gait. ndance is the tempo
number specifying for how long AMBER 2 will transition for the current primitive,
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Fig. 8: Experimental data comparing the actual and desired angles for a sequence of
steps extracted from a part of the dance sequence as realized on AMBER 2. The vertical
dashed lines indicate end points of the transitions.

while n f reeze denotes the tempo number specifying for how long the robot will freeze at
the end of the transition. Phase ∈ {SS,DS} indicates the current phase of the robot, and
Leg ∈ {Left,Right} determines which leg is the stance leg.

The desired angles and velocities are obtained from (9) for SS, and (13) for DS with
the time parameter τ being manually varied from m0τmax to m1τmax during the period
Tdance = ndance∆T seconds. It is important to note here, since the dancing duration Tdance
is specified differently than the original time duration, the transition speed changes.
Accordingly, the hip velocity should also be scaled as

vdance = Tdanceνhip/((m1−m0)τmax), (25)

with νhip is the designed hip velocity encoded in the motion primitive α . To obtain the
torque controller used in the robot, νhip in (9),(13) is replaced with vdance and the desired
angles, velocities are accordingly computed. Having the desired angle and velocity of
the robot, the torque controller is obtained from (10) or (14) based on the value of Phase
given by the sequence S. At the end of each sequence, the robot can also be freezed for
the time Tf reeze = n f reeze∆T seconds. More details about the algorithm used is shown
in Algorithm 1.
Control Implementation and Results. On the hardware level, the controller for AM-
BER 2 is implemented on two levels: a high level controller, which is realized in Real-
Time (RT) with the pseudocode running in RT as shown in Algorithm 1; and a low level
controller, which is realized by FPGA for interfacing with the hardware modules. Im-
plementing the proposed algorithm in the robot resulted in dynamically stable dancing
accurately synchronized with the tempo of the music. Fig. 8 shows the comparison be-
tween desired and joint angle trajectories, Fig. 7 shows the configuration of the robot at
different instances of time during the dance sequence. The video of AMBER 2 dancing
is shown in [1].



Algorithm 1 Real Time Module
Input: Encoder/motor status; AMBER 2 parameters: calf length Lc, thigh length Lt ;
Input: Optimization parameters: δ phip(θ

+), νhip, α;
Input: Joint angles and angular velocities θa, θ̇a; PD controller gains: K p

Phase, Kd
Phase;

Input: Dance sequence (see Fig. 6) in (α , τmax, ndance, m0, m1, n f reeze, Phase, Leg);
Output: Torque commands for FOC;
1: Enable Motor Drives;
2: repeat
3: Wait till all motor drives are Enabled
4: until ( Drive-Status == Enable )
5: while ( ¬ Stop-RT ) do
6: Based on specified stance foot, reform θa, θ̇a from Left/Right to Stance/nonStance;
7: Read absolute real time t and sequenceIndex;
8: if 0≤ t ≤ Tdancendance then
9: if m1 > m0 then

10: τd = m0τmax + τmax
t

Tdancendance
;

11: else
12: τd = m0τmax− τmax

t
Tdancendance

;

13: end if
14: else
15: τd = m1τmax;
16: end if
17: Based on τd , calculate (ξPhase) using one of (7) or (12);
18: Calculate yd

Phase(τd ,α), ẏd
Phase(τd ,α) based on Canonical Walking Function (4);

19: Calculate vdance based on the time duration Tdance;
20: Based on Phase, apply trajectory reconstruction to get (θd , θ̇d) with updated vdance;
21: Based on Phase, compute torque by choosing one of (10) or (14);
22: Reform torque u from Stance/nonStance to Left/Right and send it to FPGA;
23: if t ≥ Twalk +Tf reeze then
24: sequenceIndex +1;
25: Reset time clock;
26: end if
27: Log Data into Remote Desktop;
28: end while
29: Disable motor drives; Report errors and stop the Real Time VI;

Conclusions

This paper successfully showed how to achieve dynamically stable dancing in the bipedal
robot AMBER 2 which is accurately synchronized with the music. The dance sequence
is seen as a composition of motion behaviors with different poses and transitions tied
together in the form of a meta-dynamical system. The dance was about 1.5 minutes long
showing 10 poses and 20 transitions from one to the other. Tracking results also verified
the method used. Future work involves implementing more complex behaviors like the
underactuation, different surfaces and terrains, and also music with varying tempo.
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